College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Department of Ultrasound, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
Comput Med Imaging Graph. 2024 Apr;113:102338. doi: 10.1016/j.compmedimag.2024.102338. Epub 2024 Jan 22.
Although liver ultrasound (US) is quick and convenient, it presents challenges due to patient variations. Previous research has predominantly focused on computer-aided diagnosis (CAD), particularly for disease analysis. However, characterizing liver US images is complex due to structural diversity and a limited number of samples. Normal liver US images are crucial, especially for standard section diagnosis. This study explicitly addresses Liver US standard sections (LUSS) and involves detailed labeling of eight anatomical structures. We propose SEG-LUS, a US image segmentation model for the liver and its accessory structures. In SEG-LUS, we have adopted the shifted windows feature encoder combined with the cross-attention mechanism to adapt to capturing image information at different scales and resolutions and address context mismatch and sample imbalance in the segmentation task. By introducing the UUF module, we achieve the perfect fusion of shallow and deep information, making the information retained by the network in the feature extraction process more comprehensive. We have improved the Focal Loss to tackle the imbalance of pixel-level distribution. The results show that the SEG-LUS model exhibits significant performance improvement, with mPA, mDice, mIOU, and mASD reaching 85.05%, 82.60%, 74.92%, and 0.31, respectively. Compared with seven state-of-the-art semantic segmentation methods, the mPA improves by 5.32%. SEG-LUS is positioned to serve as a crucial reference for research in computer-aided modeling using liver US images, thereby advancing the field of US medicine research.
虽然肝脏超声(US)快速便捷,但由于患者个体差异,其也存在一定挑战。以往的研究主要集中在计算机辅助诊断(CAD)上,特别是针对疾病分析。然而,由于肝脏 US 图像的结构多样性和样本数量有限,对其进行特征描述较为复杂。正常肝脏 US 图像至关重要,尤其是对于标准切面诊断。本研究明确针对肝脏 US 标准切面(LUSS),并对 8 种解剖结构进行详细标注。我们提出了 SEG-LUS,这是一种用于肝脏及其附属结构的 US 图像分割模型。在 SEG-LUS 中,我们采用了移位窗口特征编码器结合交叉注意力机制,以适应在不同尺度和分辨率下捕捉图像信息,并解决分割任务中的上下文失配和样本不平衡问题。通过引入 UUF 模块,我们实现了浅层和深层信息的完美融合,使网络在特征提取过程中保留的信息更加全面。我们改进了焦点损失以解决像素级分布不平衡的问题。结果表明,SEG-LUS 模型的性能显著提高,mPA、mDice、mIOU 和 mASD 分别达到 85.05%、82.60%、74.92%和 0.31。与七种最先进的语义分割方法相比,mPA 提高了 5.32%。SEG-LUS 有望成为基于肝脏 US 图像的计算机辅助建模研究的重要参考,从而推动超声医学研究领域的发展。