Suppr超能文献

评估电压感受器突变的 IKs 通道的顺序和别构激活模型。

Evaluating sequential and allosteric activation models in IKs channels with mutated voltage sensors.

机构信息

Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada.

出版信息

J Gen Physiol. 2024 Mar 4;156(3). doi: 10.1085/jgp.202313465. Epub 2024 Jan 31.

Abstract

The ion-conducting IKs channel complex, important in cardiac repolarization and arrhythmias, comprises tetramers of KCNQ1 α-subunits along with 1-4 KCNE1 accessory subunits and calmodulin regulatory molecules. The E160R mutation in individual KCNQ1 subunits was used to prevent activation of voltage sensors and allow direct determination of transition rate data from complexes opening with a fixed number of 1, 2, or 4 activatable voltage sensors. Markov models were used to test the suitability of sequential versus allosteric models of IKs activation by comparing simulations with experimental steady-state and transient activation kinetics, voltage-sensor fluorescence from channels with two or four activatable domains, and limiting slope currents at negative potentials. Sequential Hodgkin-Huxley-type models approximately describe IKs currents but cannot explain an activation delay in channels with only one activatable subunit or the hyperpolarizing shift in the conductance-voltage relationship with more activatable voltage sensors. Incorporating two voltage sensor activation steps in sequential models and a concerted step in opening via rates derived from fluorescence measurements improves models but does not resolve fundamental differences with experimental data. Limiting slope current data that show the opening of channels at negative potentials and very low open probability are better simulated using allosteric models of activation with one transition per voltage sensor, which implies that movement of all four sensors is not required for IKs conductance. Tiered allosteric models with two activating transitions per voltage sensor can fully account for IKs current and fluorescence activation kinetics in constructs with different numbers of activatable voltage sensors.

摘要

离子传导 IKs 通道复合物在心脏复极化和心律失常中起重要作用,由 KCNQ1α 亚基四聚体与 1-4 个 KCNE1 辅助亚基和钙调蛋白调节分子组成。个体 KCNQ1 亚基中的 E160R 突变用于阻止电压传感器的激活,并允许直接确定具有固定数量的 1、2 或 4 个可激活电压传感器的复合物的开启的转变速率数据。通过将模拟与实验稳态和瞬态激活动力学、具有两个或四个可激活结构域的通道的电压传感器荧光以及在负电位下的限制斜率电流进行比较,使用 Markov 模型来测试 IKs 激活的顺序模型与变构模型的适用性。顺序 Hodgkin-Huxley 型模型大约描述了 IKs 电流,但不能解释只有一个可激活亚基的通道中的激活延迟或具有更多可激活电压传感器的电导-电压关系中的超极化移位。在顺序模型中包含两个电压传感器激活步骤,并通过荧光测量得出的开启速率来协调一个步骤,可以改善模型,但不能解决与实验数据的基本差异。限制斜率电流数据显示在负电位下通道的开启和非常低的开放概率,使用每个电压传感器一个转变的变构激活模型可以更好地模拟,这意味着 IKs 电导不需要所有四个传感器的移动。每个电压传感器具有两个激活转变的分层变构模型可以完全解释具有不同数量可激活电压传感器的构建体中的 IKs 电流和荧光激活动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cba/10829594/d5830998bf67/JGP_202313465_FigS1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验