Departament de Matemàtiques, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain.
Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08005, Barcelona, Spain.
Sci Rep. 2024 Jan 31;14(1):2615. doi: 10.1038/s41598-024-53105-0.
Whole-brain models have proven to be useful to understand the emergence of collective activity among neural populations or brain regions. These models combine connectivity matrices, or connectomes, with local node dynamics, noise, and, eventually, transmission delays. Multiple choices for the local dynamics have been proposed. Among them, nonlinear oscillators corresponding to a supercritical Hopf bifurcation have been used to link brain connectivity and collective phase and amplitude dynamics in different brain states. Here, we studied the linear fluctuations of this model to estimate its stationary statistics, i.e., the instantaneous and lagged covariances and the power spectral densities. This linear approximation-that holds in the case of heterogeneous parameters and time-delays-allows analytical estimation of the statistics and it can be used for fast parameter explorations to study changes in brain state, changes in brain activity due to alterations in structural connectivity, and modulations of parameter due to non-equilibrium dynamics.
全脑模型已被证明可用于理解神经群体或脑区之间集体活动的涌现。这些模型将连接矩阵或连接组与局部节点动力学、噪声,以及最终的传输延迟结合起来。已经提出了多种局部动力学选择。其中,对应于超临界 Hopf 分岔的非线性振荡器已被用于将大脑连接性和不同大脑状态下的集体相位和幅度动力学联系起来。在这里,我们研究了这个模型的线性波动来估计它的静态统计数据,即瞬时和滞后协方差以及功率谱密度。这种线性近似在异质参数和时滞的情况下成立,可以对统计数据进行分析估计,并且可以用于快速参数探索,以研究脑状态的变化、由于结构连接性的改变而导致的脑活动的改变,以及由于非平衡动力学而导致的参数调制。