Suppr超能文献

EPolar-UNet:一种基于边缘注意的 Polar UNet,用于在小数据集上进行自动医学图像分割。

EPolar-UNet: An edge-attending polar UNet for automatic medical image segmentation with small datasets.

机构信息

School of Mathematical Sciences, Zhejiang University, Hangzhou, China.

Department of Interventional Ultrasound, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.

出版信息

Med Phys. 2024 Mar;51(3):1702-1713. doi: 10.1002/mp.16957. Epub 2024 Feb 1.

Abstract

BACKGROUND

Medical image segmentation is one of the most key steps in computer-aided clinical diagnosis, geometric characterization, measurement, image registration, and so forth. Convolutional neural networks especially UNet and its variants have been successfully used in many medical image segmentation tasks. However, the results are limited by the deficiency in extracting high resolution edge information because of the design of the skip connections in UNet and the need for large available datasets.

PURPOSE

In this paper, we proposed an edge-attending polar UNet (EPolar-UNet), which was trained on the polar coordinate system instead of classic Cartesian coordinate system with an edge-attending construction in skip connection path.

METHODS

EPolar-UNet extracted the location information from an eight-stacked hourglass network as the pole for polar transformation and extracted the boundary cues from an edge-attending UNet, which consisted of a deconvolution layer and a subtraction operation.

RESULTS

We evaluated the performance of EPolar-UNet across three imaging modalities for different segmentation tasks: CVC-ClinicDB dataset for polyp, ISIC-2018 dataset for skin lesion, and our private ultrasound dataset for liver tumor segmentation. Our proposed model outperformed state-of-the-art models on all three datasets and needed only 30%-60% of training data compared with the benchmark UNet model to achieve similar performances for medical image segmentation tasks.

CONCLUSIONS

We proposed an end-to-end EPolar-UNet for automatic medical image segmentation and showed good performance on small datasets, which was critical in the field of medical image segmentation.

摘要

背景

医学图像分割是计算机辅助临床诊断、几何特征化、测量、图像配准等的关键步骤之一。卷积神经网络,尤其是 U-Net 及其变体,已成功应用于许多医学图像分割任务中。然而,由于 U-Net 中 skip connections 的设计以及对大型可用数据集的需求,其结果受到提取高分辨率边缘信息能力的限制。

目的

在本文中,我们提出了一种基于极坐标系的边缘关注 Polar U-Net(EPolar-UNet),该网络在极坐标系上进行训练,而不是在经典的笛卡尔坐标系上进行训练,并在 skip connection 路径中采用了边缘关注结构。

方法

EPolar-UNet 从堆叠的 8 层沙漏网络中提取位置信息作为极坐标变换的极点,并从由反卷积层和减法操作组成的边缘关注 U-Net 中提取边界线索。

结果

我们评估了 EPolar-UNet 在三个不同成像模式下的性能,用于不同的分割任务:CVC-ClinicDB 数据集用于息肉分割,ISIC-2018 数据集用于皮肤病变分割,以及我们的私有超声数据集用于肝脏肿瘤分割。与基准 U-Net 模型相比,我们提出的模型在所有三个数据集上的表现都优于最先进的模型,并且在进行医学图像分割任务时,仅需要 30%-60%的训练数据就能达到相似的性能。

结论

我们提出了一种端到端的 EPolar-UNet 用于自动医学图像分割,并在小数据集上表现出良好的性能,这在医学图像分割领域非常关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验