Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China.
Cell Commun Signal. 2024 Feb 1;22(1):91. doi: 10.1186/s12964-024-01490-4.
Colorectal cancer (CRC) is a significant public health concern, and its development is associated with mitochondrial dysfunction. Mitochondria can adapt to the high metabolic demands of cancer cells owing to their plasticity and dynamic nature. The fusion-fission dynamics of mitochondria play a crucial role in signal transduction and metabolic functions of CRC cells. Enhanced mitochondrial fission promotes the metabolic reprogramming of CRC cells, leading to cell proliferation, metastasis, and chemoresistance. Excessive fission can also trigger mitochondria-mediated apoptosis. In contrast, excessive mitochondrial fusion leads to adenosine triphosphate (ATP) overproduction and abnormal tumor proliferation, whereas moderate fusion protects intestinal epithelial cells from oxidative stress-induced mitochondrial damage, thus preventing colitis-associated cancer (CAC). Therefore, an imbalance in mitochondrial dynamics can either promote or inhibit CRC progression. This review provides an overview of the mechanism underlying mitochondrial fusion-fission dynamics and their impact on CRC biology. This revealed the dual role of mitochondrial fusion-fission dynamics in CRC development and identified potential drug targets. Additionally, this study partially explored mitochondrial dynamics in immune and vascular endothelial cells in the tumor microenvironment, suggesting promising prospects for targeting key fusion/fission effector proteins against CRC.
结直肠癌(CRC)是一个重大的公共卫生关注点,其发生发展与线粒体功能障碍有关。由于线粒体具有可塑性和动态性,因此能够适应癌细胞的高代谢需求。线粒体的融合-分裂动力学在 CRC 细胞的信号转导和代谢功能中起着关键作用。增强的线粒体分裂促进 CRC 细胞的代谢重编程,导致细胞增殖、转移和化疗耐药。过度分裂也会引发线粒体介导的细胞凋亡。相反,过多的线粒体融合导致三磷酸腺苷(ATP)过度产生和异常肿瘤增殖,而适度的融合可保护肠上皮细胞免受氧化应激诱导的线粒体损伤,从而预防结肠炎相关的癌症(CAC)。因此,线粒体动力学的失衡可能促进或抑制 CRC 的进展。本综述概述了线粒体融合-分裂动力学的机制及其对 CRC 生物学的影响。这揭示了线粒体融合-分裂动力学在 CRC 发生发展中的双重作用,并确定了潜在的药物靶点。此外,本研究还部分探讨了肿瘤微环境中免疫和血管内皮细胞中的线粒体动力学,表明针对 CRC 靶向关键融合/分裂效应蛋白具有广阔的前景。