Guo Zicheng, Yu Qingli, Huang Wencheng, Huang Fengyu, Chen Xiurong, Wei Chuzhong
Department of Orthopaedics, Huizhou First Hospital, Huizhou, People's Republic of China.
Department of Orthopaedics, Southern Medical University, Guangzhou, People's Republic of China.
Clin Cosmet Investig Dermatol. 2024 Jan 31;17:287-300. doi: 10.2147/CCID.S440231. eCollection 2024.
Keloid is a common condition characterized by abnormal scarring of the skin, affecting a significant number of individuals worldwide.
The occurrence of keloids may be related to the reduction of cell death. Recently, a new cell death mode that relies on copper ions has been discovered. This study aimed to identify novel cuproptosis-related genes that are associated with keloid diagnosis.
We utilized several gene expression datasets, including GSE44270 and GSE145725 as the training group, and GSE7890, GSE92566, and GSE121618 as the testing group. We integrated machine learning models (SVM, RF, GLM, and XGB) to identify 10 cuproptosis-related genes (CRGs) for keloid diagnosis in the training group. The diagnostic capability of the identified CRGs was validated using independent datasets, RT-qPCR, Western blotting, and IHC analysis.
Our study successfully categorized keloid samples into two clusters based on the expression of cuproptosis-related genes. Utilizing WGCNA analysis, we identified 110 candidate genes associated with cuproptosis. Subsequent functional enrichment analysis results revealed that these genes may play a regulatory role in cell growth within keloid tissue through the MAPK pathway. By integrating machine learning models, we identified CRGs that can be used for diagnosing keloid. The diagnostic efficacy of CRGs was confirmed using independent datasets, RT-qPCR, Western blotting, and IHC analysis. GSVA analysis indicated that high expression of CRGs influenced the gene set related to ECM receptor interaction.
This study identified 10 cuproptosis-related genes that provide insights into the molecular mechanisms underlying keloid development and may have implications for the development of targeted therapies.
瘢痕疙瘩是一种常见病症,其特征为皮肤异常瘢痕形成,全球有大量个体受其影响。
瘢痕疙瘩的发生可能与细胞死亡减少有关。最近,一种依赖铜离子的新细胞死亡模式被发现。本研究旨在鉴定与瘢痕疙瘩诊断相关的新型铜死亡相关基因。
我们利用了几个基因表达数据集,包括GSE44270和GSE145725作为训练组,以及GSE7890、GSE92566和GSE121618作为测试组。我们整合机器学习模型(支持向量机、随机森林、广义线性模型和极端梯度提升)以在训练组中鉴定10个用于瘢痕疙瘩诊断的铜死亡相关基因(CRGs)。使用独立数据集、逆转录定量聚合酶链反应、蛋白质免疫印迹和免疫组化分析验证所鉴定CRGs的诊断能力。
我们的研究基于铜死亡相关基因的表达成功地将瘢痕疙瘩样本分为两个簇。利用加权基因共表达网络分析,我们鉴定了110个与铜死亡相关的候选基因。随后的功能富集分析结果显示,这些基因可能通过丝裂原活化蛋白激酶途径在瘢痕疙瘩组织内的细胞生长中发挥调节作用。通过整合机器学习模型,我们鉴定了可用于诊断瘢痕疙瘩的CRGs。使用独立数据集、逆转录定量聚合酶链反应、蛋白质免疫印迹和免疫组化分析证实了CRGs的诊断效力。基因集变异分析表明,CRGs的高表达影响了与细胞外基质受体相互作用相关的基因集。
本研究鉴定了10个铜死亡相关基因,这些基因有助于深入了解瘢痕疙瘩发展的分子机制,并可能对靶向治疗的开发具有启示意义。