Suppr超能文献

利用宏基因组共条形码测序检测水平基因转移。

Detecting horizontal gene transfer with metagenomics co-barcoding sequencing.

机构信息

Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.

出版信息

Microbiol Spectr. 2024 Mar 5;12(3):e0360223. doi: 10.1128/spectrum.03602-23. Epub 2024 Feb 5.

Abstract

Horizontal gene transfer (HGT) is the process through which genetic information is transferred between different genomes and that played a crucial role in bacterial evolution. HGT can enable bacteria to rapidly acquire antibiotic resistance and bacteria that have acquired resistance is spreading within the microbiome. Conventional methods of characterizing HGT patterns include short-read metagenomic sequencing (short-reads mNGS), long-read sequencing, and single-cell sequencing. These approaches present several limitations, such as short-read fragments, high amounts of input DNA, and sequencing costs, respectively. Here, we attempt to circumvent present limitations to detect HGT by developing a metagenomics co-barcode sequencing workflow (MECOS) and applying it to the human and mouse gut microbiomes. In addition to that, we have over 10-fold increased contig length compared to short-reads mNGS; we also obtained exceeding 30 million paired reads with co-barcode information. Applying the novel bioinformatic pipeline, we integrated this co-barcoding information and the context information from long reads, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Specifically, we detected approximately 3,000 HGT blocks in individual samples, encompassing ~6,000 genes and ~100 taxonomic groups, including loci conferring tetracycline resistance through ribosomal protection. MECOS provides a valuable tool for investigating HGT and advance our understanding on the evolution of natural microbial communities within hosts.IMPORTANCEIn this study, to better identify horizontal gene transfer (HGT) in individual samples, we introduce a new co-barcoding sequencing system called metagenomics co-barcoding sequencing (MECOS), which has three significant improvements: (i) long DNA fragment extraction, (ii) a special transposome insertion, (iii) hybridization of DNA to barcode beads, and (4) an integrated bioinformatic pipeline. Using our approach, we have over 10-fold increased contig length compared to short-reads mNGS, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Our results indicate the presence of approximately 3,000 HGT blocks, involving roughly 6,000 genes and 100 taxonomic groups in individual samples. Notably, these HGT events are predominantly enriched in genes that confer tetracycline resistance via ribosomal protection. MECOS is a useful tool for investigating HGT and the evolution of natural microbial communities within hosts, thereby advancing our understanding of microbial ecology and evolution.

摘要

水平基因转移(HGT)是指遗传信息在不同基因组之间转移的过程,它在细菌进化中起着至关重要的作用。HGT 可使细菌迅速获得抗生素耐药性,而获得耐药性的细菌正在微生物组内传播。传统的 HGT 模式特征描述方法包括短读长宏基因组测序(short-reads mNGS)、长读长测序和单细胞测序。这些方法分别存在短读片段、高输入 DNA 量和测序成本等限制。在这里,我们试图通过开发宏基因组共条形码测序工作流程(MECOS)并将其应用于人类和小鼠肠道微生物组来规避这些当前的限制以检测 HGT。此外,与 short-reads mNGS 相比,我们的方法将获得的 contig 长度增加了 10 倍以上;我们还获得了超过 3000 万个带有共条形码信息的配对读取。通过应用新的生物信息学管道,我们整合了这种共条形码信息和长读长的上下文信息,并在纠正潜在错误的 HGT 事件后观察到超过 50 倍的 HGT 事件。具体来说,我们在单个样本中检测到大约 3000 个 HGT 块,包含约 6000 个基因和 100 个分类群,包括通过核糖体保护赋予四环素耐药性的基因座。MECOS 为研究 HGT 提供了一种有价值的工具,并增进了我们对宿主内自然微生物群落进化的理解。

重要性:在这项研究中,为了更好地在个体样本中识别水平基因转移(HGT),我们引入了一种新的共条形码测序系统,称为宏基因组共条形码测序(MECOS),该系统有三个显著改进:(i)长 DNA 片段提取,(ii)特殊转座子插入,(iii)DNA 与条形码珠杂交,以及(iv)集成生物信息学管道。使用我们的方法,与 short-reads mNGS 相比,我们获得的 contig 长度增加了 10 倍以上,在纠正潜在错误的 HGT 事件后,我们观察到超过 50 倍的 HGT 事件。我们的结果表明,在单个样本中大约存在 3000 个 HGT 块,涉及大约 6000 个基因和 100 个分类群。值得注意的是,这些 HGT 事件主要富集在通过核糖体保护赋予四环素耐药性的基因座中。MECOS 是一种用于研究 HGT 和宿主内自然微生物群落进化的有用工具,从而增进了我们对微生物生态学和进化的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8741/10913427/f11b0def29d2/spectrum.03602-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验