Suppr超能文献

人工智能时代光电子材料的发展展望

Perspectives on Development of Optoelectronic Materials in Artificial Intelligence Age.

作者信息

Yuan Ting, Song Xianzhi, Shi Yuxin, Wei Shuyan, Han Yuyi, Yang Linjuan, Zhang Yang, Li Xiaohong, Li Yunchao, Shen Lin, Fan Louzhen

机构信息

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China.

出版信息

Chem Asian J. 2024 Mar 15;19(6):e202301088. doi: 10.1002/asia.202301088. Epub 2024 Feb 27.

Abstract

Optoelectronic devices, such as light-emitting diodes, have been demonstrated as one of the most demanded forthcoming display and lighting technologies because of their low cost, low power consumption, high brightness, and high contrast. The improvement of device performance relies on advances in precisely designing novelty functional materials, including light-emitting materials, hosts, hole/electron transport materials, and yet which is a time-consuming, laborious and resource-intensive task. Recently, machine learning (ML) has shown great prospects to accelerate material discovery and property enhancement. This review will summarize the workflow of ML in optoelectronic materials discovery, including data collection, feature engineering, model selection, model evaluation and model application. We highlight multiple recent applications of machine-learned potentials in various optoelectronic functional materials, ranging from semiconductor quantum dots (QDs) or perovskite QDs, organic molecules to carbon-based nanomaterials. We furthermore discuss the current challenges to fully realize the potential of ML-assisted materials design for optoelectronics applications. It is anticipated that this review will provide critical insights to inspire new exciting discoveries on ML-guided of high-performance optoelectronic devices with a combined effort from different disciplines.

摘要

诸如发光二极管之类的光电器件,因其低成本、低功耗、高亮度和高对比度,已被证明是最具需求的新兴显示和照明技术之一。器件性能的提升依赖于精确设计新型功能材料方面的进展,这些材料包括发光材料、主体材料、空穴/电子传输材料,然而这是一项耗时、费力且资源密集的任务。最近,机器学习(ML)在加速材料发现和性能提升方面展现出了巨大的前景。本综述将总结机器学习在光电子材料发现中的工作流程,包括数据收集、特征工程、模型选择、模型评估和模型应用。我们重点介绍了机器学习势在各种光电子功能材料中的多个最新应用,范围从半导体量子点(QDs)或钙钛矿量子点、有机分子到碳基纳米材料。我们还讨论了在光电子应用中充分实现机器学习辅助材料设计潜力所面临的当前挑战。预计本综述将提供关键见解,以激发不同学科共同努力,在机器学习引导下实现高性能光电器件方面取得新的令人兴奋的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验