Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
Eur J Radiol. 2024 Mar;172:111347. doi: 10.1016/j.ejrad.2024.111347. Epub 2024 Feb 1.
This study aimed to evaluate the performance of a deep learning radiomics (DLR) model, which integrates multimodal MRI features and clinical information, in diagnosing sacroiliitis related to axial spondyloarthritis (axSpA).
MATERIAL & METHODS: A total of 485 patients diagnosed with sacroiliitis related to axSpA (n = 288) or non-sacroiliitis (n = 197) by sacroiliac joint (SIJ) MRI between May 2018 and October 2022 were retrospectively included in this study. The patients were randomly divided into training (n = 388) and testing (n = 97) cohorts. Data were collected using three MRI scanners. We applied a convolutional neural network (CNN) called 3D U-Net for automated SIJ segmentation. Additionally, three CNNs (ResNet50, ResNet101, and DenseNet121) were used to diagnose axSpA-related sacroiliitis using a single modality. The prediction results of all the CNN models across different modalities were integrated using a stacking method based on different algorithms to construct ensemble models, and the optimal ensemble model was used as DLR signature. A combined model incorporating DLR signature with clinical factors was developed using multivariable logistic regression. The performance of the models was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).
Automated deep learning-based segmentation and manual delineation showed good correlation. ResNet50, as the optimal basic model, achieved an area under the curve (AUC) and accuracy of 0.839 and 0.804, respectively. The combined model yielded the highest performance in diagnosing axSpA-related sacroiliitis (AUC: 0.910; accuracy: 0.856) and outperformed the best ensemble model (AUC: 0.868; accuracy: 0.825) (all P < 0.05). Moreover, the DCA showed good clinical utility in the combined model.
We developed a diagnostic model for axSpA-related sacroiliitis by combining the DLR signature with clinical factors, which resulted in excellent diagnostic performance.
本研究旨在评估一种深度学习放射组学(DLR)模型的性能,该模型整合了多模态 MRI 特征和临床信息,用于诊断与中轴型脊柱关节炎(axSpA)相关的骶髂关节炎。
回顾性纳入 2018 年 5 月至 2022 年 10 月间因骶髂关节(SIJ)MRI 诊断为与 axSpA 相关的骶髂关节炎(n=288)或非骶髂关节炎(n=197)的 485 例患者。患者被随机分为训练(n=388)和测试(n=97)队列。数据由 3 台 MRI 扫描仪采集。我们应用了一种名为 3D U-Net 的卷积神经网络(CNN)进行自动 SIJ 分割。此外,还使用了 3 种 CNN(ResNet50、ResNet101 和 DenseNet121),通过单一模态来诊断 axSpA 相关的骶髂关节炎。使用基于不同算法的堆叠方法整合了所有 CNN 模型在不同模态下的预测结果,构建了集成模型,并将最优的集成模型作为 DLR 特征。使用多变量逻辑回归构建了一种包含 DLR 特征和临床因素的联合模型。使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)评估模型的性能。
基于深度学习的自动分割和手动勾画具有良好的相关性。ResNet50 作为最优基础模型,其曲线下面积(AUC)和准确率分别为 0.839 和 0.804。联合模型在诊断与 axSpA 相关的骶髂关节炎方面表现出最佳性能(AUC:0.910;准确率:0.856),优于最优集成模型(AUC:0.868;准确率:0.825)(均 P<0.05)。此外,DCA 显示联合模型具有良好的临床实用性。
我们通过将 DLR 特征与临床因素相结合,开发了一种用于诊断与 axSpA 相关的骶髂关节炎的诊断模型,该模型具有出色的诊断性能。