Liu Shuo, Dun Chaochao, Jiang Qike, Xuan Zhengxi, Yang Feipeng, Guo Jinghua, Urban Jeffrey J, Swihart Mark T
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Nat Commun. 2024 Feb 7;15(1):1167. doi: 10.1038/s41467-024-45413-w.
The Hume-Rothery rules governing solid-state miscibility limit the compositional space for new inorganic material discovery. Here, we report a non-equilibrium, one-step, and scalable flame synthesis method to overcome thermodynamic limits and incorporate immiscible elements into single phase ceramic nanoshells. Starting from prototype examples including (NiMg)O, (NiAl)O, and (NiZr)O, we then extend this method to a broad range of Ni-containing ceramic solid solutions, and finally to general binary combinations of elements. Furthermore, we report an "encapsulated exsolution" phenomenon observed upon reducing the metastable porous (NiAl)O to create ultra-stable Ni nanoparticles embedded within the walls of porous AlO nanoshells. This nanoconfined structure demonstrated high sintering resistance during 640 h of catalysis of CO reforming of methane, maintaining constant 96% CH and CO conversion at 800 °C and dramatically outperforming conventional catalysts. Our findings could greatly expand opportunities to develop novel inorganic energy, structural, and functional materials.
控制固态混溶性的休姆-罗瑟里规则限制了新型无机材料发现的成分空间。在此,我们报告一种非平衡、一步且可扩展的火焰合成方法,以克服热力学限制并将互不相溶的元素纳入单相陶瓷纳米壳中。从包括(NiMg)O、(NiAl)O和(NiZr)O等原型示例开始,我们随后将此方法扩展到广泛的含镍陶瓷固溶体,最后扩展到元素的一般二元组合。此外,我们报告了在将亚稳态多孔(NiAl)O还原以在多孔AlO纳米壳壁内创建超稳定Ni纳米颗粒时观察到的“封装脱溶”现象。这种纳米受限结构在甲烷二氧化碳重整催化的640小时内表现出高抗烧结性,在800°C下保持恒定的96% CH和CO转化率,并且显著优于传统催化剂。我们的发现可能极大地扩展开发新型无机能源、结构和功能材料的机会。