Suppr超能文献

推动脉冲神经网络迈向深度残差学习

Advancing Spiking Neural Networks Toward Deep Residual Learning.

作者信息

Hu Yifan, Deng Lei, Wu Yujie, Yao Man, Li Guoqi

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):2353-2367. doi: 10.1109/TNNLS.2024.3355393. Epub 2025 Feb 6.

Abstract

Despite the rapid progress of neuromorphic computing, inadequate capacity and insufficient representation power of spiking neural networks (SNNs) severely restrict their application scope in practice. Residual learning and shortcuts have been evidenced as an important approach for training deep neural networks, but rarely did previous work assessed their applicability to the specifics of SNNs. In this article, we first identify that this negligence leads to impeded information flow and the accompanying degradation problem in a spiking version of vanilla ResNet. To address this issue, we propose a novel SNN-oriented residual architecture termed MS-ResNet, which establishes membrane-based shortcut pathways, and further proves that the gradient norm equality can be achieved in MS-ResNet by introducing block dynamical isometry theory, which ensures the network can be well-behaved in a depth-insensitive way. Thus, we are able to significantly extend the depth of directly trained SNNs, e.g., up to 482 layers on CIFAR-10 and 104 layers on ImageNet, without observing any slight degradation problem. To validate the effectiveness of MS-ResNet, experiments on both frame-based and neuromorphic datasets are conducted. MS-ResNet104 achieves a superior result of 76.02% accuracy on ImageNet, which is the highest to the best of our knowledge in the domain of directly trained SNNs. Great energy efficiency is also observed, with an average of only one spike per neuron needed to classify an input sample. We believe our powerful and scalable models will provide strong support for further exploration of SNNs.

摘要

尽管神经形态计算取得了快速进展,但脉冲神经网络(SNN)的容量不足和表征能力有限严重限制了它们在实际中的应用范围。残差学习和捷径已被证明是训练深度神经网络的重要方法,但之前很少有工作评估它们对SNN具体情况的适用性。在本文中,我们首先发现这种疏忽会导致在脉冲版的普通ResNet中信息流受阻以及随之而来的退化问题。为了解决这个问题,我们提出了一种面向SNN的新型残差架构,称为MS-ResNet,它建立了基于膜的捷径路径,并通过引入块动态等距理论进一步证明了在MS-ResNet中可以实现梯度范数相等,这确保了网络能够以深度不敏感的方式良好运行。因此,我们能够显著扩展直接训练的SNN的深度,例如在CIFAR-10上达到482层,在ImageNet上达到104层,而不会出现任何轻微的退化问题。为了验证MS-ResNet的有效性,我们在基于帧的数据集和神经形态数据集上都进行了实验。MS-ResNet104在ImageNet上取得了76.02%的准确率这一优异结果,据我们所知,这是直接训练的SNN领域中最高的。还观察到了很高的能源效率,对一个输入样本进行分类时每个神经元平均只需要一个脉冲。我们相信我们强大且可扩展的模型将为SNN的进一步探索提供有力支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验