Suppr超能文献

MP2RAGE 与 MPRAGE 基于表面的形态计量学在局灶性癫痫中的比较。

MP2RAGE vs. MPRAGE surface-based morphometry in focal epilepsy.

机构信息

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.

Clinic of Neurology, University Medical Center Goettingen, Goettingen, Germany.

出版信息

PLoS One. 2024 Feb 8;19(2):e0296843. doi: 10.1371/journal.pone.0296843. eCollection 2024.

Abstract

In drug-resistant focal epilepsy, detecting epileptogenic lesions using MRI poses a critical diagnostic challenge. Here, we assessed the utility of MP2RAGE-a T1-weighted sequence with self-bias correcting properties commonly utilized in ultra-high field MRI-for the detection of epileptogenic lesions using a surface-based morphometry pipeline based on FreeSurfer, and compared it to the common approach using T1w MPRAGE, both at 3T. We included data from 32 patients with focal epilepsy (5 MRI-positive, 27 MRI-negative with lobar seizure onset hypotheses) and 94 healthy controls from two epilepsy centres. Surface-based morphological measures and intensities were extracted and evaluated in univariate GLM analyses as well as multivariate unsupervised 'novelty detection' machine learning procedures. The resulting prediction maps were analyzed over a range of possible thresholds using alternative free-response receiver operating characteristic (AFROC) methodology with respect to the concordance with predefined lesion labels or hypotheses on epileptogenic zone location. We found that MP2RAGE performs at least comparable to MPRAGE and that especially analysis of MP2RAGE image intensities may provide additional diagnostic information. Secondly, we demonstrate that unsupervised novelty-detection machine learning approaches may be useful for the detection of epileptogenic lesions (maximum AFROC AUC 0.58) when there is only a limited lesional training set available. Third, we propose a statistical method of assessing lesion localization performance in MRI-negative patients with lobar hypotheses of the epileptogenic zone based on simulation of a random guessing process as null hypothesis. Based on our findings, it appears worthwhile to study similar surface-based morphometry approaches in ultra-high field MRI (≥ 7 T).

摘要

在耐药性局灶性癫痫中,使用 MRI 检测致痫性病变是一项极具挑战性的诊断任务。在这里,我们评估了具有自偏置校正特性的 MP2RAGE(一种在超高场 MRI 中常用的 T1 加权序列)在使用基于 FreeSurfer 的基于表面形态计量学管道检测致痫性病变中的效用,并将其与在 3T 下使用 T1w MPRAGE 的常见方法进行了比较。我们纳入了来自两个癫痫中心的 32 名局灶性癫痫患者(5 例 MRI 阳性,27 例 MRI 阴性,伴局灶性发作起始假说)和 94 名健康对照者的数据。从单变量 GLM 分析以及多元无监督“新颖性检测”机器学习程序中提取并评估了基于表面的形态学测量值和强度。使用替代的自由响应接受者操作特性(AFROC)方法,针对与预定义病变标签或致痫区位置假说的一致性,在一系列可能的阈值上分析了产生的预测图。我们发现,MP2RAGE 的性能至少与 MPRAGE 相当,尤其是分析 MP2RAGE 图像强度可能会提供额外的诊断信息。其次,我们证明了在只有有限的病变训练集可用的情况下,无监督新颖性检测机器学习方法可能有助于检测致痫性病变(最大 AFROC AUC 为 0.58)。第三,我们提出了一种基于随机猜测过程作为零假设的统计方法,用于评估具有局灶性发作起始假说的 MRI 阴性患者的病变定位性能。基于我们的发现,在超高场 MRI(≥7T)中研究类似的基于表面形态计量学的方法似乎是值得的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/651f/10852321/a5f0db9850a6/pone.0296843.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验