Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Division of Cardiology, Department of Pediatrics, USA.
Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Division of Cardiology, Department of Pediatrics, USA.
J Neurosci Methods. 2024 Apr;404:110076. doi: 10.1016/j.jneumeth.2024.110076. Epub 2024 Feb 7.
Resting-state functional connectivity (RSFC) analysis with widefield optical imaging (WOI) is a potentially powerful tool to develop imaging biomarkers in mouse models of disease before translating them to human neuroimaging with functional magnetic resonance imaging (fMRI). The delineation of such biomarkers depends on rigorous statistical analysis. However, statistical understanding of WOI data is limited. In particular, cluster-based analysis of neuroimaging data depends on assumptions of spatial stationarity (i.e., that the distribution of cluster sizes under the null is equal at all brain locations). Whether actual data deviate from this assumption has not previously been examined in WOI.
In this manuscript, we characterize the effects of spatial nonstationarity in WOI RSFC data and adapt a "two-pass" technique from fMRI to correct cluster sizes and mitigate spatial bias, both parametrically and nonparametrically. These methods are tested on multi-institutional data.
We find that spatial nonstationarity has a substantial effect on inference in WOI RSFC data with false positives much more likely at some brain regions than others. This pattern of bias varies between imaging systems, contrasts, and mouse ages, all of which could affect experimental reproducibility if not accounted for.
Both parametric and nonparametric corrections for nonstationarity result in significant improvements in spatial bias. The proposed methods are simple to implement and will improve the robustness of inference in optical neuroimaging data.
利用宽视野光学成像(WOI)进行静息态功能连接(RSFC)分析,是在将其转化为功能磁共振成像(fMRI)的人类神经影像学之前,开发疾病小鼠模型成像生物标志物的一种潜在强大工具。这种生物标志物的描绘取决于严格的统计分析。然而,WOI 数据的统计理解是有限的。特别是,神经影像学数据的基于聚类的分析取决于空间平稳性的假设(即,在零假设下,簇大小的分布在所有大脑位置上是相等的)。实际上的数据是否偏离了这一假设,以前在 WOI 中并没有被检验过。
在本文中,我们描述了 WOI RSFC 数据中空间非平稳性的影响,并采用 fMRI 中的“两阶段”技术来校正聚类大小并减轻空间偏差,包括参数和非参数方法。这些方法在多机构数据上进行了测试。
我们发现,空间非平稳性对 WOI RSFC 数据的推断有很大影响,在一些大脑区域比其他区域更容易出现假阳性。这种偏差模式因成像系统、对比和小鼠年龄而异,如果不加以考虑,这些差异都可能影响实验的可重复性。
非平稳性的参数和非参数校正都显著改善了空间偏差。所提出的方法易于实现,并将提高光学神经影像学数据推断的稳健性。