Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Instituto de Salud Carlos III, Universitat de Barcelona, Barcelona, Spain.
Mol Psychiatry. 2024 May;29(5):1465-1477. doi: 10.1038/s41380-024-02426-7. Epub 2024 Feb 9.
Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.
使用结构磁共振成像(sMRI)的机器学习方法可用于疾病分类,尽管其预测精神病的能力尚不清楚。我们创建了一个模型,该模型将后来发展为精神病的 CHR 个体(CHR-PS+)与健康对照(HCs)区分开来。我们还评估了我们是否可以将 CHR-PS+个体与后来未发展为精神病的个体(CHR-PS-)和随访状态不确定的个体(CHR-UNK)区分开来。从 21 个地点获得了 1165 名 CHR 个体(CHR-PS+,n=144;CHR-PS-,n=793;和 CHR-UNK,n=228)和 1029 名 HCs 的 T1 加权结构脑 MRI 扫描。我们使用 ComBat 来协调皮质下体积、皮质厚度和表面积数据的测量值,并使用广义加性模型校正年龄和性别对非线性的影响。来自 20 个地点的 CHR-PS+(n=120)和 HC(n=799)数据被用作训练数据集,我们使用该数据集构建分类器。其余样本被用作外部验证数据集,以评估分类器的性能(测试、独立验证和独立组[CHR-PS-和 CHR-UNK]数据集)。分类器在训练和独立验证数据集上的准确性分别为 85%和 73%。右侧额上回、右侧颞上回和双侧岛叶等区域皮质表面积测量值对将 CHR-PS+与 HC 区分开来具有重要意义。与 CHR-PS+相比,CHR-PS-和 CHR-UNK 个体更有可能被归类为 HC(分类为 HC 的比例:CHR-PS+,30%;CHR-PS-,73%;CHR-UNK,80%)。我们使用多站点 sMRI 来训练分类器以预测 CHR 个体的精神病发作,并且在独立样本中显示出预测 CHR-PS+的潜力。结果表明,在考虑青少年大脑发育时,CHR 个体的基线 MRI 扫描可能有助于确定其预后。未来需要进行前瞻性研究,以确定该分类器在临床环境中是否实际有用。