Suppr超能文献

PET/CT影像组学对宫颈癌淋巴结转移的预测价值及潜在关联

Predictive value and potential association of PET/CT radiomics on lymph node metastasis of cervical cancer.

作者信息

Yang Shimin, Zhang Wenrui, Liu Chunli, Li Chunbo, Hua Keqin

机构信息

Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University.

Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, People's Republic of China.

出版信息

Ann Med Surg (Lond). 2023 Nov 7;86(2):805-810. doi: 10.1097/MS9.0000000000001412. eCollection 2024 Feb.

Abstract

OBJECTIVE

Due to the information-rich nature of positron emission tomography/computed tomography (PET/CT) images, the authors hope to explore radiomics features that could distinguish metastatic lymph nodes (LNs) from hypermetabolic benign LNs, in addition to conventional indicators.

METHODS

PET/CT images of 106 patients with early-stage cervical cancer from 2019 to 2021 were retrospectively analyzed. The tumor lesions and LN regions of PET/CT images were outlined with SeeIt, and then radiomics features were extracted. The least absolute shrinkage and selection operator (LASSO) was used to select features. The final selected radiomics features of LNs were used as predictors to construct a machine learning model to predict LN metastasis.

RESULTS

The authors determined two morphological coefficient characteristics of cervical lesions (shape - major axis length and shape - mesh volume), one first order characteristics of LNs (first order - 10 percentile) and two gray-level co-occurrence matrix (GLCM) characteristics of LNs (GLCM - id and GLCM - inverse variance) were closely related to LN metastasis. Finally, a neural network was constructed based on the radiomic features of the LNs. The area under the curve of receiver operating characteristic (AUC-ROC) of the model was 0.983 in the training set and 0.860 in the test set.

CONCLUSION

The authors constructed and demonstrated a neural network based on radiomics features of PET/CT to evaluate the risk of single LN metastasis in early-stage cervical cancer.

摘要

目的

由于正电子发射断层扫描/计算机断层扫描(PET/CT)图像具有信息丰富的特点,作者希望除了传统指标外,探索能够区分转移性淋巴结(LN)与高代谢良性LN的放射组学特征。

方法

回顾性分析2019年至2021年106例早期宫颈癌患者的PET/CT图像。使用SeeIt勾勒PET/CT图像中的肿瘤病变和LN区域,然后提取放射组学特征。采用最小绝对收缩和选择算子(LASSO)进行特征选择。将最终选定的LN放射组学特征用作预测指标,构建机器学习模型以预测LN转移。

结果

作者确定了宫颈病变的两个形态学系数特征(形状 - 长轴长度和形状 - 网格体积)、LN的一个一阶特征(一阶 - 第10百分位数)以及LN的两个灰度共生矩阵(GLCM)特征(GLCM - 同一性和GLCM - 逆方差)与LN转移密切相关。最后,基于LN的放射组学特征构建了一个神经网络。该模型在训练集中的受试者操作特征曲线下面积(AUC-ROC)为0.983,在测试集中为0.860。

结论

作者构建并验证了一个基于PET/CT放射组学特征的神经网络,以评估早期宫颈癌单个LN转移的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f1/10849352/3a20fb562227/ms9-86-0805-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验