Suppr超能文献

使用可变形与刚性图像配准技术评估结直肠肝转移热消融术的消融边界:一项回顾性单中心研究。

Ablative margin quantification using deformable versus rigid image registration in colorectal liver metastasis thermal ablation: a retrospective single-center study.

机构信息

Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.

Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.

出版信息

Eur Radiol. 2024 Sep;34(9):5541-5550. doi: 10.1007/s00330-024-10632-8. Epub 2024 Feb 9.

Abstract

PURPOSE

To investigate the correlation of minimal ablative margin (MAM) quantification using biomechanical deformable (DIR) versus intensity-based rigid image registration (RIR) with local outcomes following colorectal liver metastasis (CLM) thermal ablation.

METHODS

This retrospective single-institution study included consecutive patients undergoing thermal ablation between May 2016 and October 2021. Patients who did not have intraprocedural pre- and post-ablation contrast-enhanced CT images for MAM quantification or follow-up period less than 1 year without residual tumor or local tumor progression (LTP) were excluded. DIR and RIR methods were used to quantify the MAM. The registration accuracy was compared using Dice similarity coefficient (DSC). Area under the receiver operating characteristic curve (AUC) was used to test MAM in predicting local tumor outcomes.

RESULTS

A total of 72 patients (mean age 57; 44 men) with 139 tumors (mean diameter 1.5 cm ± 0.8 (SD)) were included. During a median follow-up of 29.4 months, there was one residual unablated tumor and the LTP rate was 17% (24/138). The ranges of DSC were 0.96-0.98 and 0.67-0.98 for DIR and RIR, respectively (p < 0.001). When using DIR, 27 (19%) tumors were partially or totally registered outside the liver, compared to 46 (33%) with RIR. Using DIR versus RIR, the corresponding median MAM was 4.7 mm versus 4.0 mm, respectively (p = 0.5). The AUC in predicting residual tumor and 1-year LTP for DIR versus RIR was 0.89 versus 0.72, respectively (p < 0.001).

CONCLUSION

Ablative margin quantified on intra-procedural CT imaging using DIR method outperformed RIR for predicting local outcomes of CLM thermal ablation.

CLINICAL RELEVANCE STATEMENT

The study supports the role of biomechanical deformable image registration as the preferred image registration method over rigid image registration for quantifying minimal ablative margins using intraprocedural contrast-enhanced CT images.

KEY POINTS

• Accurate and reproducible image registration is a prerequisite for clinical application of image-based ablation confirmation methods. • When compared to intensity-based rigid image registration, biomechanical deformable image registration for minimal ablative margin quantification was more accurate for liver registration using intraprocedural contrast-enhanced CT images. • Biomechanical deformable image registration outperformed intensity-based rigid image registration for predicting local tumor outcomes following colorectal liver metastasis thermal ablation.

摘要

目的

探讨基于生物力学变形(DIR)与基于强度的刚性图像配准(RIR)的最小消融边界(MAM)定量分析与结直肠肝转移(CLM)热消融后局部疗效的相关性。

方法

本回顾性单中心研究纳入 2016 年 5 月至 2021 年 10 月期间连续接受热消融治疗的患者。排除术中无 MAM 定量分析的对比增强 CT 图像或无残留肿瘤或局部肿瘤进展(LTP)的随访时间少于 1 年的患者。使用 DIR 和 RIR 方法来定量 MAM。使用 Dice 相似系数(DSC)比较配准精度。受试者工作特征曲线(ROC)下面积(AUC)用于预测局部肿瘤疗效。

结果

共纳入 72 例患者(平均年龄 57 岁,44 名男性),共 139 个肿瘤(平均直径 1.5±0.8 cm(标准差))。在中位随访 29.4 个月期间,有 1 例残留未消融肿瘤,LTP 率为 17%(24/138)。DIR 的 DSC 范围为 0.96-0.98,RIR 的 DSC 范围为 0.67-0.98(p<0.001)。使用 DIR 时,27 个(19%)肿瘤部分或全部位于肝外,而 RIR 则为 46 个(33%)。与 RIR 相比,使用 DIR 时,相应的中位 MAM 为 4.7 mm 与 4.0 mm(p=0.5)。对于预测残留肿瘤和 1 年 LTP,DIR 的 AUC 为 0.89,RIR 的 AUC 为 0.72(p<0.001)。

结论

使用 DIR 方法在术中 CT 图像上定量 MAM 优于 RIR,可预测 CLM 热消融的局部疗效。

临床相关性声明

该研究支持在使用术中增强 CT 图像进行基于生物力学的变形图像配准方法定量最小消融边界时,其优于基于强度的刚性图像配准方法。

要点

• 准确且可重复的图像配准是图像引导消融确认方法临床应用的前提。• 与基于强度的刚性图像配准相比,使用基于生物力学的变形图像配准进行术中增强 CT 图像上的最小消融边界定量分析时,肝脏配准更准确。• 与基于强度的刚性图像配准相比,基于生物力学的变形图像配准在预测结直肠肝转移热消融后局部肿瘤疗效方面表现更好。

相似文献

4
Ablative Margins of Colorectal Liver Metastases Using Deformable CT Image Registration and Autosegmentation.
Radiology. 2023 Apr;307(2):e221373. doi: 10.1148/radiol.221373. Epub 2023 Jan 31.
6
9
Multicenter and inter-software evaluation of ablative margins after thermal ablation of colorectal liver metastases.
Eur Radiol. 2025 Feb;35(2):1046-1056. doi: 10.1007/s00330-024-10956-5. Epub 2024 Aug 2.

本文引用的文献

2
Ablative Margins of Colorectal Liver Metastases Using Deformable CT Image Registration and Autosegmentation.
Radiology. 2023 Apr;307(2):e221373. doi: 10.1148/radiol.221373. Epub 2023 Jan 31.
4
Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.
Ann Oncol. 2023 Jan;34(1):10-32. doi: 10.1016/j.annonc.2022.10.003. Epub 2022 Oct 25.
5
Study Protocol COVER-ALL: Clinical Impact of a Volumetric Image Method for Confirming Tumour Coverage with Ablation on Patients with Malignant Liver Lesions.
Cardiovasc Intervent Radiol. 2022 Dec;45(12):1860-1867. doi: 10.1007/s00270-022-03255-3. Epub 2022 Sep 4.
6
Automated segmentation of colorectal liver metastasis and liver ablation on contrast-enhanced CT images.
Front Oncol. 2022 Aug 11;12:886517. doi: 10.3389/fonc.2022.886517. eCollection 2022.
7
3D margin assessment predicts local tumor progression after ablation of colorectal cancer liver metastases.
Int J Hyperthermia. 2022;39(1):880-887. doi: 10.1080/02656736.2022.2055795.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验