Sun Zijun, Li Zhen, Chen Jinlin, Yang Yuying, Su Chunrong, Lv Yumin, Lu Zhenhong, He Xiong, Wang Yongqing
Guangxi Key Laboratory of Multidimensional Information Fusion for Intelligent Vehicles, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China.
Molecules. 2024 Feb 1;29(3):683. doi: 10.3390/molecules29030683.
Bismuth vanadate (BVO) is regarded as an exceptional photoanode material for photoelectrochemical (PEC) water splitting, but it is restricted by the severe photocorrosion and slow water oxidation kinetics. Herein, a synergistic strategy combined with a Co(HPO)(OH) (CoPH) cocatalyst and an AlO (ALO) passivation layer was proposed for enhanced PEC performance. The CoPH/ALO/BVO photoanode exhibits an impressive photocurrent density of 4.9 mA cm at 1.23 V and an applied bias photon-to-current efficiency (ABPE) of 1.47% at 0.76 V. This outstanding PEC performance can be ascribed to the suppressed surface charge recombination, facilitated interfacial charge transfer, and accelerated water oxidation kinetics with the introduction of the CoPH cocatalyst and ALO passivation layer. This work provides a novel and synergistic approach to design an efficient and stable photoanode for PEC applications by combining an oxygen evolution cocatalyst and a passivation layer.
钒酸铋(BVO)被认为是用于光电化学(PEC)水分解的一种优异光阳极材料,但它受到严重的光腐蚀和缓慢的水氧化动力学的限制。在此,提出了一种将Co(HPO)(OH)(CoPH)助催化剂和AlO(ALO)钝化层相结合的协同策略,以提高PEC性能。CoPH/ALO/BVO光阳极在1.23 V时表现出令人印象深刻的4.9 mA cm的光电流密度,在0.76 V时的外加偏压光电流效率(ABPE)为1.47%。这种出色的PEC性能可归因于通过引入CoPH助催化剂和ALO钝化层抑制了表面电荷复合、促进了界面电荷转移以及加速了水氧化动力学。这项工作通过结合析氧助催化剂和钝化层,提供了一种新颖的协同方法来设计用于PEC应用的高效且稳定的光阳极。