Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
Int J Mol Sci. 2024 Jan 31;25(3):1727. doi: 10.3390/ijms25031727.
Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.
糖尿病性视网膜病变(DR)相关的视力丧失是一种破坏性疾病,影响着工作年龄段的人群。视网膜病变是由于血清成分渗漏到视网膜组织中,固有吞噬细胞(小胶质细胞)的激活,以及血管和神经元的损伤。虽然有短期的干预措施,但它们并不能恢复视觉功能或阻止疾病的进展。小胶质细胞炎症反应对神经血管单元的影响尚不清楚。在这项研究中,我们描述了 DR 实验模型中小胶质细胞与血管的相互作用。早期糖尿病表现出激活的视网膜小胶质细胞、血管通透性和血管异常,伴有血管扭曲以及星形胶质细胞和内皮细胞相关紧密连接(TJ)和缝隙连接(GJ)蛋白的减少。小胶质细胞通过 CX3CR1 受体特异性地与神经元衍生趋化因子 fractalkine(FKN)结合,以改善小胶质细胞的激活。使用神经元特异性重组腺相关病毒(rAAV),我们在糖尿病发病时通过玻璃体内递送,分别过表达可溶性(sFKN)或膜结合(mFKN)FKN。这项研究强调了 rAAV-sFKN 的神经保护作用,可减少小胶质细胞激活、血管扭曲、纤维蛋白(原)沉积和星形胶质细胞增生,并支持维持 GJ 连接蛋白-43(Cx43)和 TJ 闭合蛋白-1(ZO-1)分子。结果还表明,在给予 rAAV-sFKN 和 rAAV-mFKN 时,小胶质细胞-血管相互作用会影响血管宽度。给予 rAAV-sFKN 可改善视觉功能,而不影响外周免疫反应。这些发现表明,rAAV-sFKN 的过表达可以通过促进胶质-神经信号来减轻血管异常。sFKN 基因治疗是一种很有前途的转化方法,可以逆转由血管功能障碍引起的视力丧失。