Laboratory of Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy.
Department of Experimental Medicine (DIMES), University of Genova, Via Leon Battista Alberti, 16132 Genova, Italy.
Int J Mol Sci. 2024 Feb 1;25(3):1796. doi: 10.3390/ijms25031796.
Uveal melanoma (UM) is the most common primary intraocular malignancy with a limited five-year survival for metastatic patients. Limited therapeutic treatments are currently available for metastatic disease, even if the genomics of this tumor has been deeply studied using next-generation sequencing (NGS) and functional experiments. The profound knowledge of the molecular features that characterize this tumor has not led to the development of efficacious therapies, and the survival of metastatic patients has not changed for decades. Several bioinformatics methods have been applied to mine NGS tumor data in order to unveil tumor biology and detect possible molecular targets for new therapies. Each application can be single domain based while others are more focused on data integration from multiple genomics domains (as gene expression and methylation data). Examples of single domain approaches include differentially expressed gene (DEG) analysis on gene expression data with statistical methods such as SAM (significance analysis of microarray) or gene prioritization with complex algorithms such as deep learning. Data fusion or integration methods merge multiple domains of information to define new clusters of patients or to detect relevant genes, according to multiple NGS data. In this work, we compare different strategies to detect relevant genes for metastatic disease prediction in the TCGA uveal melanoma (UVM) dataset. Detected targets are validated with multi-gene score analysis on a larger UM microarray dataset.
葡萄膜黑色素瘤 (UM) 是最常见的原发性眼内恶性肿瘤,转移性患者的五年生存率有限。即使使用下一代测序 (NGS) 和功能实验对这种肿瘤的基因组进行了深入研究,目前也只有有限的治疗方法可用于转移性疾病。尽管对该肿瘤的分子特征有了深刻的了解,但仍未开发出有效的治疗方法,转移性患者的生存率几十年来并未改变。已经应用了几种生物信息学方法来挖掘 NGS 肿瘤数据,以揭示肿瘤生物学并检测新疗法的可能分子靶点。每种应用都可以基于单个领域,而其他应用则更侧重于来自多个基因组学领域的数据集成(如基因表达和甲基化数据)。单领域方法的示例包括使用 SAM(微阵列的显著性分析)等统计方法对基因表达数据进行差异表达基因 (DEG) 分析,或使用深度学习等复杂算法进行基因优先级排序。数据融合或集成方法根据多个 NGS 数据,融合多个信息领域以定义新的患者群体或检测相关基因。在这项工作中,我们比较了不同的策略,以检测 TCGA 葡萄膜黑色素瘤 (UVM) 数据集转移性疾病预测的相关基因。通过对更大的 UM 微阵列数据集进行多基因评分分析来验证检测到的靶点。