Human-Centered AI Lab, Institute of Forest Engineering, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 1190 Wien, Austria.
Institute of Forest Growth, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, 1190 Wien, Austria.
Sensors (Basel). 2024 Jan 25;24(3):798. doi: 10.3390/s24030798.
Smart forestry, an innovative approach leveraging artificial intelligence (AI), aims to enhance forest management while minimizing the environmental impact. The efficacy of AI in this domain is contingent upon the availability of extensive, high-quality data, underscoring the pivotal role of sensor-based data acquisition in the digital transformation of forestry. However, the complexity and challenging conditions of forest environments often impede data collection efforts. Achieving the full potential of smart forestry necessitates a comprehensive integration of sensor technologies throughout the process chain, ensuring the production of standardized, high-quality data essential for AI applications. This paper highlights the symbiotic relationship between human expertise and the digital transformation in forestry, particularly under challenging conditions. We emphasize the human-in-the-loop approach, which allows experts to directly influence data generation, enhancing adaptability and effectiveness in diverse scenarios. A critical aspect of this integration is the deployment of autonomous robotic systems in forests, functioning both as data collectors and processing hubs. These systems are instrumental in facilitating sensor integration and generating substantial volumes of quality data. We present our universal sensor platform, detailing our experiences and the critical importance of the initial phase in digital transformation-the generation of comprehensive, high-quality data. The selection of appropriate sensors is a key factor in this process, and our findings underscore its significance in advancing smart forestry.
智慧林业是一种利用人工智能(AI)的创新方法,旨在提高森林管理水平,同时最大限度地减少对环境的影响。AI 在这一领域的有效性取决于广泛、高质量数据的可用性,这突显了基于传感器的数据采集在林业数字化转型中的关键作用。然而,森林环境的复杂性和挑战性条件常常阻碍了数据的收集工作。要充分发挥智慧林业的潜力,需要在整个过程链中全面整合传感器技术,确保生成标准化、高质量的数据,这是 AI 应用的基础。本文强调了人类专业知识与林业数字化转型之间的共生关系,特别是在具有挑战性的条件下。我们强调了人机共生的方法,使专家能够直接影响数据的生成,从而提高在各种场景下的适应性和有效性。这一整合的一个关键方面是在森林中部署自主机器人系统,它们既是数据收集者,也是处理中心。这些系统在促进传感器集成和生成大量高质量数据方面发挥了重要作用。我们介绍了我们的通用传感器平台,详细介绍了我们的经验,以及数字化转型初始阶段——生成全面、高质量数据的重要性。在这个过程中,选择合适的传感器是一个关键因素,我们的发现强调了它在推进智慧林业方面的重要性。