Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
Plant Physiol Biochem. 2024 Feb;207:108407. doi: 10.1016/j.plaphy.2024.108407. Epub 2024 Feb 5.
Major portion of wheat grain consist of carbohydrate, mainly starch. The proportion of amylose and amylopectin in starch greatly influence the end product quality. Advancement in understanding starch biosynthesis pathway and modulating key genes has enabled the genetic modification of crops resulting in enhanced starch quality. However, the regulation of starch biosynthesis genes still remains unexplored. So, to expand the limited knowledge, here, we characterized a Ser/Thr kinase, SnRK1α in wheat and determined its role in regulating starch biosynthesis. SnRK1 is an evolutionary conserved protein kinase and share homology to yeast SNF1. Yeast complementation assay suggests TaSnRK1α restores growth defect and promotes glycogen accumulation. Domain analysis and complementation assay with truncated domain proteins suggest the importance of ATP-binding and UBA domain in TaSnRK1α activity. Sub-cellular localization identified nuclear and cytoplasmic localization of TaSnRK1α in tobacco leaves. Further, heterologous over-expression (O/E) of TaSnRK1α in Arabidopsis not only led to increase in starch content but also enlarges the starch granules. TaSnRK1α was found to restore starch accumulation in Arabidopsis kin10. Remarkably, TaSnRK1α O/E increases the AGPase activity suggesting the direct regulation of rate limiting enzyme AGPase involved in starch biosynthesis. Furthermore, in vitro and in vivo interaction assay reveal that TaSnRK1α interacts with AGPase large sub-unit. Overall, our findings indicate that TaSnRK1α plays a role in starch biosynthesis by regulating AGPase activity.
小麦籽粒的主要成分是碳水化合物,主要是淀粉。淀粉中直链淀粉和支链淀粉的比例对最终产品的质量有很大影响。对淀粉生物合成途径和调节关键基因的深入了解,使作物的遗传修饰得以实现,从而提高了淀粉的质量。然而,淀粉生物合成基因的调控仍未得到探索。因此,为了扩展有限的知识,我们在这里对小麦中的丝氨酸/苏氨酸激酶 SnRK1α进行了表征,并确定了其在调节淀粉生物合成中的作用。SnRK1 是一种进化上保守的蛋白激酶,与酵母 SNF1 具有同源性。酵母互补实验表明 TaSnRK1α 可以恢复生长缺陷并促进糖原积累。结构域分析和具有截断结构域的蛋白的互补实验表明,ATP 结合和 UBA 结构域对 TaSnRK1α 的活性很重要。亚细胞定位确定了 TaSnRK1α 在烟草叶片中的核质定位。此外,在拟南芥中异源过表达 TaSnRK1α 不仅导致淀粉含量增加,而且还使淀粉粒增大。发现在拟南芥 kin10 中 TaSnRK1α 可以恢复淀粉的积累。值得注意的是,TaSnRK1α 的过表达增加了 AGPase 的活性,表明直接调节参与淀粉生物合成的限速酶 AGPase。此外,体外和体内相互作用实验表明 TaSnRK1α 与 AGPase 大亚基相互作用。总的来说,我们的研究结果表明 TaSnRK1α 通过调节 AGPase 活性在淀粉生物合成中发挥作用。