Tosaka Toshiyuki, Kamiya Koki
Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
ACS Omega. 2024 Jan 26;9(5):5911-5918. doi: 10.1021/acsomega.3c09431. eCollection 2024 Feb 6.
Giant unilamellar vesicles (GUVs) integrated with membrane proteins (proteo-GUVs) are attractive tools for visualizing membrane protein functions such as enzyme reactions and molecular transportation. In the dehydration-rehydration method, one of the methods used to form proteo-GUVs, they are formed by using a dried film containing phospholipids and membrane proteins through rehydration with an alternating current electric field and a supporting gel. However, these methods make it difficult to form proteo-GUVs under physiological salt concentration and charged phospholipid conditions or carry the risk of gel contamination of lipid membranes. Therefore, proteo-GUVs formed by these rehydration methods may be harmful to membrane proteins. Here, we propose a method for the formation of proteo-GUVs containing physiological salt concentrations and negatively charged phospholipids that do not require an electric field and a supporting gel. To investigate the molecular transport of modified outer membrane protein G (OmpG), OmpG-giant unilamellar vesicles (GUVs) and OmpG-large unilamellar vesicles (LUVs) were formed. The structure and function of different mutants reconstituted into LUVs were evaluated by using circular dichroism spectroscopy and electrophysiological measurements. In addition, the molecular transport of OmpG in GUVs was evaluated by monitoring the Ca influx into GUVs and fluorescent molecule leakage from GUVs through OmpG nanopores. We found that the amount of Ca influx into GUVs through the OmpG nanopores depended on the pore size of OmpG. Our method for forming proteo-GUVs can be applied for the functional evaluation of β-barrel porin and in biological sensors using β-barrel porin.
整合有膜蛋白的巨型单层囊泡(proteo - GUVs)是用于可视化膜蛋白功能(如酶反应和分子运输)的有吸引力的工具。在用于形成proteo - GUVs的脱水 - 再水化方法中,它们是通过含有磷脂和膜蛋白的干燥膜在交变电场和支撑凝胶存在下再水化而形成的。然而,这些方法难以在生理盐浓度和带电荷磷脂条件下形成proteo - GUVs,或者存在脂质膜被凝胶污染的风险。因此,通过这些再水化方法形成的proteo - GUVs可能对膜蛋白有害。在此,我们提出一种形成含有生理盐浓度和带负电荷磷脂的proteo - GUVs的方法,该方法不需要电场和支撑凝胶。为了研究修饰的外膜蛋白G(OmpG)的分子运输,制备了OmpG - 巨型单层囊泡(GUVs)和OmpG - 大单层囊泡(LUVs)。通过圆二色光谱法和电生理测量评估了重组到LUVs中的不同突变体的结构和功能。此外,通过监测Ca²⁺流入GUVs以及荧光分子通过OmpG纳米孔从GUVs泄漏,评估了OmpG在GUVs中的分子运输。我们发现通过OmpG纳米孔流入GUVs的Ca²⁺量取决于OmpG的孔径。我们形成proteo - GUVs的方法可用于β - 桶状孔蛋白的功能评估以及使用β - 桶状孔蛋白的生物传感器中。