Suppr超能文献

基于等变神经网络的聚合物筛选大规模玻璃化转变温度预测

Large-Scale Glass-Transition Temperature Prediction with an Equivariant Neural Network for Screening Polymers.

作者信息

Long Zheng, Lu Hongmei, Zhang Zhimin

机构信息

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR, China.

出版信息

ACS Omega. 2024 Jan 26;9(5):5452-5462. doi: 10.1021/acsomega.3c06843. eCollection 2024 Feb 6.

Abstract

The practically infinite chemical and morphological space of polymers makes them pervasive with applications in materials science but challenges the rational discovery of new materials with favorable properties. Polymer informatics aims to accelerate materials design through property prediction and large-scale virtual screening. In this study, a new method (Lieconv-Tg) has been developed to predict glass-transition temperature (Tg) values from repeating units of polymers based on Lieconv, which is equivariant with transformations from any specified Lie group. The introduction of equivariance allows the prediction of molecular properties from their 3D structures, independent of orientation and position. A total of 27,659 homopolymers with Tg values were collected from PolyInfo, and a standard data set containing 7166 polymers (named data set_Tg) was created for training a robust Lieconv-Tg model. Using the 3D coordinates as input, Lieconv-Tg performs better than Edge-Conditioned Convolution (ECC), and the mean absolute error (MAE) is significantly reduced by ∼6 from ∼30 to ∼24 on both the validation set and the test set, and the value for both the validation set and the test set can reach 0.90. Lieconv-Tg is thus used to screen promising candidates from a benchmark database named PI1M with 995,800 generated polymers. However, there are some implausible repeating units in PI1M. To get more reasonable candidates from PI1M, a new filtering method has been accomplished by utilizing Morgan fingerprints at the polymerization points (MF@PP) of repeating units in data set_Tg. The combination of a standard data set, Lieconv-Tg, and a more reasonable screening strategy provides new directions in materials design for polymers.

摘要

聚合物在化学和形态方面几乎具有无限的空间,这使得它们在材料科学中的应用极为广泛,但也给合理发现具有优良性能的新材料带来了挑战。聚合物信息学旨在通过性能预测和大规模虚拟筛选来加速材料设计。在本研究中,基于Lieconv开发了一种新方法(Lieconv-Tg),用于从聚合物的重复单元预测玻璃化转变温度(Tg)值,Lieconv对于来自任何指定李群的变换是等变的。等变性的引入使得能够从分子的三维结构预测其性质,而与取向和位置无关。从PolyInfo收集了总共27659种具有Tg值的均聚物,并创建了一个包含7166种聚合物的标准数据集(命名为数据集_Tg),用于训练一个强大的Lieconv-Tg模型。以三维坐标作为输入,Lieconv-Tg的性能优于边缘条件卷积(ECC),在验证集和测试集上,平均绝对误差(MAE)从约30显著降低至约24,降低了约6,并且验证集和测试集的 值均可达到0.90。因此,Lieconv-Tg被用于从一个名为PI1M的基准数据库中筛选有前景的候选物,该数据库包含995800种生成的聚合物。然而,PI1M中存在一些不合理的重复单元。为了从PI1M中获得更合理的候选物,利用数据集_Tg中重复单元在聚合点处的摩根指纹(MF@PP)完成了一种新的筛选方法。标准数据集、Lieconv-Tg和更合理的筛选策略的结合为聚合物材料设计提供了新的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9535/10851255/f4b7f98d943a/ao3c06843_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验