Suppr超能文献

理解多参数 MRI 性能与前列腺癌之间的空间相关性。

Understanding Spatial Correlation Between Multiparametric MRI Performance and Prostate Cancer.

机构信息

Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.

Physics, Biology in Medicine Interdisciplinary Program (IDP), David Geffen School of Medicine at UCLA, Los Angeles, California, USA.

出版信息

J Magn Reson Imaging. 2024 Nov;60(5):2184-2195. doi: 10.1002/jmri.29287. Epub 2024 Feb 12.

Abstract

BACKGROUND

Multiparametric MRI (mpMRI) has shown a substantial impact on prostate cancer (PCa) diagnosis. However, the understanding of the spatial correlation between mpMRI performance and PCa location is still limited.

PURPOSE

To investigate the association between mpMRI performance and tumor spatial location within the prostate using a prostate sector map, described by Prostate Imaging Reporting and Data System (PI-RADS) v2.1.

STUDY TYPE

Retrospective.

SUBJECTS

One thousand one hundred forty-three men who underwent mpMRI before radical prostatectomy between 2010 and 2022.

FIELD STRENGTH/SEQUENCE: 3.0 T. T2-weighted turbo spin-echo, a single-shot spin-echo EPI sequence for diffusion-weighted imaging, and a gradient echo sequence for dynamic contrast-enhanced MRI sequences.

ASSESSMENT

Integrated relative cancer prevalence (rCP), detection rate (DR), and positive predictive value (PPV) maps corresponding to the prostate sector map for PCa lesions were created. The relationship between tumor location and its detection/missing by radiologists on mpMRI compared to WMHP as a reference standard was investigated.

STATISTICAL TESTS

A weighted chi-square test was performed to examine the statistical differences for rCP, DR, and PPV of the aggregated sectors within the zone, anterior/posterior, left/right prostate, and different levels of the prostate with a statistically significant level of 0.05.

RESULTS

A total of 1665 PCa lesions were identified in 1143 patients, and from those 1060 lesions were clinically significant (cs)PCa tumors (any Gleason score [GS] ≥7). Our sector-based analysis utilizing weighted chi-square tests suggested that the left posterior part of PZ had a high likelihood of missing csPCa lesions at a DR of 67.0%. Aggregated sector analysis indicated that the anterior or apex locations in PZ had the significantly lowest csPCa detection at 67.3% and 71.5%, respectively.

DATA CONCLUSION

Spatial characteristics of the per-lesion-based mpMRI performance for diagnosis of PCa were studied. Our results demonstrated that there is a spatial correlation between mpMRI performance and locations of PCa on the prostate.

EVIDENCE LEVEL

4 TECHNICAL EFFICACY: Stage 2.

摘要

背景

多参数 MRI(mpMRI)已显示对前列腺癌(PCa)诊断有重大影响。然而,对于 mpMRI 性能与前列腺癌位置之间的空间相关性的理解仍然有限。

目的

使用前列腺成像报告和数据系统(PI-RADS)v2.1 描述的前列腺扇区图,研究 mpMRI 性能与前列腺内肿瘤空间位置之间的关系。

研究类型

回顾性。

受试者

1143 名 2010 年至 2022 年间接受根治性前列腺切除术前行 mpMRI 的男性。

磁场强度/序列:3.0 T. T2 加权涡轮自旋回波,用于扩散加权成像的单次激发自旋回波 EPI 序列,以及用于动态对比增强 MRI 序列的梯度回波序列。

评估

为 PCa 病变创建对应于前列腺扇区图的整合相对癌患病率(rCP)、检测率(DR)和阳性预测值(PPV)图。研究肿瘤位置与放射科医生在 mpMRI 上的检测/遗漏之间的关系,以 WMHP 作为参考标准。

统计检验

使用加权卡方检验比较感兴趣区域内的肿瘤位置与 WMHP 之间的 rCP、DR 和 PPV 的统计学差异,检验水准为 0.05。

结果

在 1143 名患者中,共发现 1665 个 PCa 病变,其中 1060 个为临床显著(cs)PCa 肿瘤(任何 Gleason 评分[GS]≥7)。我们基于扇区的分析利用加权卡方检验表明,PZ 的左后部分在 DR 为 67.0%时,有很高的可能遗漏 csPCa 病变。聚集扇区分析表明,PZ 的前或尖部位置的 csPCa 检出率分别显著最低,为 67.3%和 71.5%。

数据结论

研究了基于病变的 mpMRI 性能对 PCa 诊断的空间特征。我们的结果表明,mpMRI 性能与前列腺上的 PCa 位置之间存在空间相关性。

证据水平

4 级 技术功效:2 级。

相似文献

1
Understanding Spatial Correlation Between Multiparametric MRI Performance and Prostate Cancer.
J Magn Reson Imaging. 2024 Nov;60(5):2184-2195. doi: 10.1002/jmri.29287. Epub 2024 Feb 12.
2
Investigating MRI-Associated Biological Aspects of Racial Disparities in Prostate Cancer for African American and White Men.
J Magn Reson Imaging. 2025 Jan;61(1):121-131. doi: 10.1002/jmri.29397. Epub 2024 May 15.
3
Comparison of biparametric and multiparametric MRI in the diagnosis of prostate cancer.
Cancer Imaging. 2019 Dec 21;19(1):90. doi: 10.1186/s40644-019-0274-9.
6
Comparison of Biparametric and Multiparametric MRI for Clinically Significant Prostate Cancer Detection With PI-RADS Version 2.1.
J Magn Reson Imaging. 2021 Jan;53(1):283-291. doi: 10.1002/jmri.27283. Epub 2020 Jul 2.

本文引用的文献

3
Detection and Localization of Prostate Cancer at 3-T Multiparametric MRI Using PI-RADS Segmentation.
AJR Am J Roentgenol. 2019 Jun;212(6):W122-W131. doi: 10.2214/AJR.18.20113. Epub 2019 Apr 17.
4
Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging.
Eur Urol. 2019 May;75(5):712-720. doi: 10.1016/j.eururo.2018.11.031. Epub 2018 Dec 1.
7
MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis.
N Engl J Med. 2018 May 10;378(19):1767-1777. doi: 10.1056/NEJMoa1801993. Epub 2018 Mar 18.
8
A Magnetic Resonance Imaging-Based Prediction Model for Prostate Biopsy Risk Stratification.
JAMA Oncol. 2018 May 1;4(5):678-685. doi: 10.1001/jamaoncol.2017.5667.
10
Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
Med Image Anal. 2017 Dec;42:212-227. doi: 10.1016/j.media.2017.08.006. Epub 2017 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验