Suppr超能文献

深静脉通路质量预测的自适应深度学习:用于血液透析患者。

DeepVAQ : an adaptive deep learning for prediction of vascular access quality in hemodialysis patients.

机构信息

College of Digital Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.

Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.

出版信息

BMC Med Inform Decis Mak. 2024 Feb 12;24(1):45. doi: 10.1186/s12911-024-02441-2.

Abstract

BACKGROUND

Chronic kidney disease is a prevalent global health issue, particularly in advanced stages requiring dialysis. Vascular access (VA) quality is crucial for the well-being of hemodialysis (HD) patients, ensuring optimal blood transfer through a dialyzer machine. The ultrasound dilution technique (UDT) is used as the gold standard for assessing VA quality; however, its limited availability due to high costs impedes its widespread adoption. We aimed to develop a novel deep learning model specifically designed to predict VA quality from Photoplethysmography (PPG) sensors.

METHODS

Clinical data were retrospectively gathered from 398 HD patients, spanning from February 2021 to February 2022. The DeepVAQ model leverages a convolutional neural network (CNN) to process PPG sensor data, pinpointing specific frequencies and patterns that are indicative of VA quality. Meticulous training and fine-tuning were applied to ensure the model's accuracy and reliability. Validation of the DeepVAQ model was carried out against established diagnostic standards using key performance metrics, including accuracy, specificity, precision, F-score, and area under the receiver operating characteristic curve (AUC).

RESULT

DeepVAQ demonstrated superior performance, achieving an accuracy of 0.9213 and a specificity of 0.9614. Its precision and F-score stood at 0.8762 and 0.8364, respectively, with an AUC of 0.8605. In contrast, traditional models like Decision Tree, Naive Bayes, and kNN demonstrated significantly lower performance across these metrics. This comparison underscores DeepVAQ's enhanced capability in accurately predicting VA quality compared to existing methodologies.

CONCLUSION

Exemplifying the potential of artificial intelligence in healthcare, particularly in the realm of deep learning, DeepVAQ represents a significant advancement in non-invasive diagnostics. Its precise multi-class classification ability for VA quality in hemodialysis patients holds substantial promise for improving patient outcomes, potentially leading to a reduction in mortality rates.

摘要

背景

慢性肾脏病是一个普遍存在的全球健康问题,特别是在需要透析的晚期阶段。血管通路(VA)的质量对血液透析(HD)患者的健康至关重要,它确保了通过透析机进行最佳的血液传输。超声稀释技术(UDT)是评估 VA 质量的金标准;然而,由于成本高,其可用性有限,限制了它的广泛应用。我们旨在开发一种专门用于从光电容积脉搏波(PPG)传感器预测 VA 质量的新型深度学习模型。

方法

从 2021 年 2 月至 2022 年 2 月,回顾性地收集了 398 名 HD 患者的临床数据。DeepVAQ 模型利用卷积神经网络(CNN)处理 PPG 传感器数据,精确定位指示 VA 质量的特定频率和模式。通过细致的训练和微调,确保模型的准确性和可靠性。使用关键性能指标(包括准确性、特异性、精度、F 分数和接收者操作特征曲线(ROC)下的面积(AUC))对 DeepVAQ 模型进行验证,以与既定诊断标准相对照。

结果

DeepVAQ 表现出色,准确性为 0.9213,特异性为 0.9614。其精度和 F 分数分别为 0.8762 和 0.8364,AUC 为 0.8605。相比之下,传统模型,如决策树、朴素贝叶斯和 kNN,在这些指标上的表现明显较低。这种比较突出了 DeepVAQ 与现有方法相比,在准确预测 VA 质量方面的增强能力。

结论

作为人工智能在医疗保健领域,特别是深度学习领域的潜力的例证,DeepVAQ 代表了非侵入性诊断的重大进展。它对血液透析患者 VA 质量进行精确的多类分类的能力,为改善患者预后,潜在地降低死亡率,提供了巨大的希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c156/10860325/f3e5f5f23f2d/12911_2024_2441_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验