School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080.
Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506.
eNeuro. 2024 Mar 5;11(3). doi: 10.1523/ENEURO.0500-23.2024. Print 2024 Mar.
In the field of behavioral neuroscience, the classification and scoring of animal behavior play pivotal roles in the quantification and interpretation of complex behaviors displayed by animals. Traditional methods have relied on video examination by investigators, which is labor-intensive and susceptible to bias. To address these challenges, research efforts have focused on computational methods and image-processing algorithms for automated behavioral classification. Two primary approaches have emerged: marker- and markerless-based tracking systems. In this study, we showcase the utility of "Augmented Reality University of Cordoba" (ArUco) markers as a marker-based tracking approach for assessing rat engagement during a nose-poking go/no-go behavioral task. In addition, we introduce a two-state engagement model based on ArUco marker tracking data that can be analyzed with a rectangular kernel convolution to identify critical transition points between states of engagement and distraction. In this study, we hypothesized that ArUco markers could be utilized to accurately estimate animal engagement in a nose-poking go/no-go behavioral task, enabling the computation of optimal task durations for behavioral testing. Here, we present the performance of our ArUco tracking program, demonstrating a classification accuracy of 98% that was validated against the manual curation of video data. Furthermore, our convolution analysis revealed that, on average, our animals became disengaged with the behavioral task at ∼75 min, providing a quantitative basis for limiting experimental session durations. Overall, our approach offers a scalable, efficient, and accessible solution for automated scoring of rodent engagement during behavioral data collection.
在行为神经科学领域,动物行为的分类和评分在量化和解释动物表现出的复杂行为方面起着关键作用。传统的方法依赖于研究人员的视频检查,这种方法既耗费人力,又容易产生偏差。为了解决这些挑战,研究人员致力于开发用于自动行为分类的计算方法和图像处理算法。主要出现了两种方法:基于标记和无标记的跟踪系统。在这项研究中,我们展示了“科尔多瓦大学增强现实”(ArUco)标记作为基于标记的跟踪方法的效用,用于评估大鼠在鼻触式 Go/No-Go 行为任务中的参与度。此外,我们引入了一种基于 ArUco 标记跟踪数据的两状态参与模型,该模型可以使用矩形核卷积进行分析,以识别参与和分心状态之间的关键转换点。在这项研究中,我们假设 ArUco 标记可以用于准确估计动物在鼻触式 Go/No-Go 行为任务中的参与度,从而计算出行为测试的最佳任务持续时间。在这里,我们展示了我们的 ArUco 跟踪程序的性能,该程序的分类准确率达到 98%,这是通过对视频数据的手动策展进行验证的。此外,我们的卷积分析表明,我们的动物平均在 75 分钟左右对行为任务失去兴趣,为限制实验会话持续时间提供了定量依据。总的来说,我们的方法为在行为数据收集过程中自动评分啮齿动物的参与度提供了一种可扩展、高效和易于访问的解决方案。