Suppr超能文献

快速多视图锚图聚类

Fast Multiview Anchor-Graph Clustering.

作者信息

Yang Ben, Zhang Xuetao, Wu Jinghan, Nie Feiping, Lin Zhiping, Wang Fei, Chen Badong

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):4947-4958. doi: 10.1109/TNNLS.2024.3359690. Epub 2025 Feb 28.

Abstract

Due to its high computational complexity, graph-based methods have limited applicability in large-scale multiview clustering tasks. To address this issue, many accelerated algorithms, especially anchor graph-based methods and indicator learning-based methods, have been developed and made a great success. Nevertheless, since the restrictions of the optimization strategy, these accelerated methods still need to approximate the discrete graph-cutting problem to a continuous spectral embedding problem and utilize different discretization strategies to obtain discrete sample categories. To avoid the loss of effectiveness and efficiency caused by the approximation and discretization, we establish a discrete fast multiview anchor graph clustering (FMAGC) model that first constructs an anchor graph of each view and then generates a discrete cluster indicator matrix by solving the discrete multiview graph-cutting problem directly. Since the gradient descent-based method makes it hard to solve this discrete model, we propose a fast coordinate descent-based optimization strategy with linear complexity to solve it without approximating it as a continuous one. Extensive experiments on widely used normal and large-scale multiview datasets show that FMAGC can improve clustering effectiveness and efficiency compared to other state-of-the-art baselines.

摘要

由于其计算复杂度高,基于图的方法在大规模多视图聚类任务中的适用性有限。为了解决这个问题,人们开发了许多加速算法,特别是基于锚图的方法和基于指标学习的方法,并取得了巨大成功。然而,由于优化策略的限制,这些加速方法仍然需要将离散的图切割问题近似为连续的谱嵌入问题,并利用不同的离散化策略来获得离散的样本类别。为了避免由近似和离散化导致的有效性和效率损失,我们建立了一个离散快速多视图锚图聚类(FMAGC)模型,该模型首先构建每个视图的锚图,然后通过直接求解离散多视图图切割问题来生成离散的聚类指标矩阵。由于基于梯度下降的方法难以求解这个离散模型,我们提出了一种具有线性复杂度的基于快速坐标下降的优化策略来求解它,而无需将其近似为连续模型。在广泛使用的常规和大规模多视图数据集上进行的大量实验表明,与其他当前最先进的基线方法相比,FMAGC可以提高聚类的有效性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验