Suppr超能文献

使用广义加性混合模型对个体和团队单手手动操作的心率进行建模。

Modeling heart rate of individual and team manual handling with one hand using generalized additive mixed models.

机构信息

Department of Ergonomics, School of Public Health, Research Centre for Health Sciences Hamadan University of Medical Sciences, Hamadan, Iran.

Department of Sports Biomechanics, Faculty of Sport Sciences, Bu-Ali Sina University, Hamadan, Iran.

出版信息

BMC Med Res Methodol. 2024 Feb 15;24(1):37. doi: 10.1186/s12874-024-02169-7.

Abstract

OBJECTIVES

Despite the fact that team manual handling is common in different working environments, the previous studies in this regard, particularly those with a physiological approach are quite limited. The present study is an attempt to model the heart rate (HR) of individual and team manual handling with one hand.

METHODS

Twenty-five young men (aged 21.24±1.42 year) volunteered for this study. The experiments included individual and two-person handling of the load with three different weights with and without height difference. The participants' HR was registered at the end of the route by a chest-strap pulse monitor and a polar watch according to the manufacturer's recommendation. A multivariate Generalized Additive Mixed Model (MGAMM) was used for modeling heart rate based on explanatory variables of workload, carry method, HR, body weight, height, knee height, shoulder height, elbow height, and hand height. The significance level of the tests was considered as <0.05.

RESULTS

Based on the MGAMM, the average HR (bpm) of participants increased as the workload increased (P<0.001). Handling the load with a taller person increased the HR compared to shorter partner (P<0.001). Moreover, the nonlinear associations of the resting HR (P<0.001), body weight (P<0.001), height (P<0.001), and the height of elbow, hand and knee (P<0.001) were statistically significant. The adjusted R of the model was 0.89 indicating that about 90 percent of the variations observed in HR could be explained by the variables in the model. This was greater than the model considering only linear effects (R =0.60).

CONCLUSION

The model obtained in this study can predict the heart rate of individual and team one-handed handling with high validity. The MGAMM can be used in modeling heart rate in manual handling.

摘要

目的

尽管团队手动搬运在不同的工作环境中很常见,但之前在这方面的研究,特别是采用生理学方法的研究相当有限。本研究试图建立单人及双人单手搬运的心率(HR)模型。

方法

25 名年轻男性(年龄 21.24±1.42 岁)自愿参加了这项研究。实验包括个体和两人搬运三种不同重量的负载,有无高度差。根据制造商的建议,参与者的 HR 在路线结束时通过胸带脉搏监测器和polar 手表进行登记。使用多元广义加性混合模型(MGAMM)基于工作负荷、搬运方法、HR、体重、身高、膝高、肩高、肘高和手高等解释变量对心率进行建模。检验的显著性水平设为<0.05。

结果

基于 MGAMM,参与者的平均 HR(bpm)随工作量的增加而增加(P<0.001)。与较矮的搭档相比,搬运较高的人会增加 HR(P<0.001)。此外,静息 HR(P<0.001)、体重(P<0.001)、身高(P<0.001)以及肘、手和膝高(P<0.001)的非线性关联具有统计学意义。模型的调整 R 值为 0.89,表明模型中变量可以解释 HR 观察到的约 90%的变化。这大于仅考虑线性效应的模型(R=0.60)。

结论

本研究中获得的模型可以高度有效地预测单人及双人单手搬运的心率。MGAMM 可用于手动搬运的心率建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8041/10867988/c8edb1b61758/12874_2024_2169_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验