Suppr超能文献

基于潜在高斯过程的贝叶斯生存树风险模型。

A Bayesian survival treed hazards model using latent Gaussian processes.

机构信息

Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN, 46285, United States.

Department of Mathematical Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts, 01852, United States.

出版信息

Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad009.

Abstract

Survival models are used to analyze time-to-event data in a variety of disciplines. Proportional hazard models provide interpretable parameter estimates, but proportional hazard assumptions are not always appropriate. Non-parametric models are more flexible but often lack a clear inferential framework. We propose a Bayesian treed hazards partition model that is both flexible and inferential. Inference is obtained through the posterior tree structure and flexibility is preserved by modeling the log-hazard function in each partition using a latent Gaussian process. An efficient reversible jump Markov chain Monte Carlo algorithm is accomplished by marginalizing the parameters in each partition element via a Laplace approximation. Consistency properties for the estimator are established. The method can be used to help determine subgroups as well as prognostic and/or predictive biomarkers in time-to-event data. The method is compared with some existing methods on simulated data and a liver cirrhosis dataset.

摘要

生存模型用于分析各种学科中的事件时间数据。比例风险模型提供可解释的参数估计,但比例风险假设并不总是适用。非参数模型更灵活,但通常缺乏明确的推理框架。我们提出了一种灵活且可推理的贝叶斯树状风险分区模型。通过后验树结构进行推理,并通过在每个分区中使用潜在高斯过程来对对数风险函数进行建模,从而保持灵活性。通过使用拉普拉斯逼近对每个分区元素中的参数进行边缘化,实现了高效的可逆跳跃马尔可夫链蒙特卡罗算法。建立了估计量的一致性性质。该方法可用于帮助确定事件时间数据中的亚组以及预后和/或预测生物标志物。该方法在模拟数据和肝硬化数据集上与一些现有方法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验