Center for Life Nano- and Neuro-Science, RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy.
Centre for Human Technologies (CHT), RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy.
Nucleic Acids Res. 2024 Apr 12;52(6):e31. doi: 10.1093/nar/gkae076.
Proteins are crucial in regulating every aspect of RNA life, yet understanding their interactions with coding and noncoding RNAs remains limited. Experimental studies are typically restricted to a small number of cell lines and a limited set of RNA-binding proteins (RBPs). Although computational methods based on physico-chemical principles can predict protein-RNA interactions accurately, they often lack the ability to consider cell-type-specific gene expression and the broader context of gene regulatory networks (GRNs). Here, we assess the performance of several GRN inference algorithms in predicting protein-RNA interactions from single-cell transcriptomic data, and propose a pipeline, called scRAPID (single-cell transcriptomic-based RnA Protein Interaction Detection), that integrates these methods with the catRAPID algorithm, which can identify direct physical interactions between RBPs and RNA molecules. Our approach demonstrates that RBP-RNA interactions can be predicted from single-cell transcriptomic data, with performances comparable or superior to those achieved for the well-established task of inferring transcription factor-target interactions. The incorporation of catRAPID significantly enhances the accuracy of identifying interactions, particularly with long noncoding RNAs, and enables the identification of hub RBPs and RNAs. Additionally, we show that interactions between RBPs can be detected based on their inferred RNA targets. The software is freely available at https://github.com/tartaglialabIIT/scRAPID.
蛋白质在调节 RNA 生命的各个方面都至关重要,但对它们与编码和非编码 RNA 的相互作用的理解仍然有限。实验研究通常仅限于少数细胞系和有限数量的 RNA 结合蛋白 (RBP)。虽然基于物理化学原理的计算方法可以准确预测蛋白质-RNA 相互作用,但它们通常缺乏考虑细胞类型特异性基因表达和更广泛的基因调控网络 (GRN) 背景的能力。在这里,我们评估了几种 GRN 推断算法在从单细胞转录组数据中预测蛋白质-RNA 相互作用的性能,并提出了一种名为 scRAPID(基于单细胞转录组的 RNA 蛋白相互作用检测)的流水线,该流水线将这些方法与 catRAPID 算法集成,该算法可以识别 RBP 和 RNA 分子之间的直接物理相互作用。我们的方法表明,从单细胞转录组数据中可以预测 RBP-RNA 相互作用,其性能可与推断转录因子 - 靶标相互作用的成熟任务相媲美或优于。catRAPID 的纳入显著提高了识别相互作用的准确性,特别是对于长非编码 RNA,并且能够识别枢纽 RBP 和 RNA。此外,我们表明可以根据推断的 RNA 靶标检测 RBP 之间的相互作用。该软件可在 https://github.com/tartaglialabIIT/scRAPID 上免费获得。