Albertini Petru P, Newton Mark A, Wang Min, Segura Lecina Ona, Green Philippe B, Stoian Dragos C, Oveisi Emad, Loiudice Anna, Buonsanti Raffaella
Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, Grenoble, France.
Nat Mater. 2024 May;23(5):680-687. doi: 10.1038/s41563-024-01819-x. Epub 2024 Feb 16.
Hybrid organic/inorganic materials have contributed to solve important challenges in different areas of science. One of the biggest challenges for a more sustainable society is to have active and stable catalysts that enable the transition from fossil fuel to renewable feedstocks, reduce energy consumption and minimize the environmental footprint. Here we synthesize novel hybrid materials where an amorphous oxide coating with embedded organic ligands surrounds metallic nanocrystals. We demonstrate that the hybrid coating is a powerful means to create electrocatalysts stable against structural reconstruction during the CO electroreduction. These electrocatalysts consist of copper nanocrystals encapsulated in a hybrid organic/inorganic alumina shell. This shell locks a fraction of the copper surface into a reduction-resistant Cu state, which inhibits those redox processes responsible for the structural reconstruction of copper. The electrocatalyst activity is preserved, which would not be possible with a conventional dense alumina coating. Varying the shell thickness and the coating morphology yields fundamental insights into the stabilization mechanism and emphasizes the importance of the Lewis acidity of the shell in relation to the retention of catalyst structure. The synthetic tunability of the chemistry developed herein opens new avenues for the design of stable electrocatalysts and beyond.
有机/无机杂化材料有助于解决不同科学领域中的重要挑战。对于一个更具可持续性的社会而言,最大的挑战之一是拥有活性且稳定的催化剂,以实现从化石燃料向可再生原料的转变,降低能源消耗并最小化环境足迹。在此,我们合成了新型杂化材料,其中嵌入有机配体的非晶态氧化物涂层包围着金属纳米晶体。我们证明,这种杂化涂层是一种强大的手段,可用于制备在CO电还原过程中对结构重构具有稳定性的电催化剂。这些电催化剂由封装在有机/无机氧化铝杂化壳中的铜纳米晶体组成。该壳层将一部分铜表面锁定为抗还原的Cu状态,从而抑制了那些导致铜结构重构的氧化还原过程。电催化剂的活性得以保留,而传统的致密氧化铝涂层则无法做到这一点。改变壳层厚度和涂层形态可深入了解稳定化机制,并强调壳层的路易斯酸度对于保持催化剂结构的重要性。本文所开发化学方法的合成可调性为稳定电催化剂及其他领域的设计开辟了新途径。