Caballero-Mancebo Silvia, Shinde Rushikesh, Bolger-Munro Madison, Peruzzo Matilda, Szep Gregory, Steccari Irene, Labrousse-Arias David, Zheden Vanessa, Merrin Jack, Callan-Jones Andrew, Voituriez Raphaël, Heisenberg Carl-Philipp
Institute of Science and Technology Austria, Klosterneuburg, Austria.
Laboratoire de Matière et Systèmes Complexes, Université de Paris Cité and CNRS, Paris, France.
Nat Phys. 2024;20(2):310-321. doi: 10.1038/s41567-023-02302-1. Epub 2024 Jan 9.
Contraction and flow of the actin cell cortex have emerged as a common principle by which cells reorganize their cytoplasm and take shape. However, how these cortical flows interact with adjacent cytoplasmic components, changing their form and localization, and how this affects cytoplasmic organization and cell shape remains unclear. Here we show that in ascidian oocytes, the cooperative activities of cortical actomyosin flows and deformation of the adjacent mitochondria-rich myoplasm drive oocyte cytoplasmic reorganization and shape changes following fertilization. We show that vegetal-directed cortical actomyosin flows, established upon oocyte fertilization, lead to both the accumulation of cortical actin at the vegetal pole of the zygote and compression and local buckling of the adjacent elastic solid-like myoplasm layer due to friction forces generated at their interface. Once cortical flows have ceased, the multiple myoplasm buckles resolve into one larger buckle, which again drives the formation of the contraction pole-a protuberance of the zygote's vegetal pole where maternal mRNAs accumulate. Thus, our findings reveal a mechanism where cortical actomyosin network flows determine cytoplasmic reorganization and cell shape by deforming adjacent cytoplasmic components through friction forces.
肌动蛋白细胞皮层的收缩和流动已成为细胞重组其细胞质并形成形状的一个共同原理。然而,这些皮层流动如何与相邻的细胞质成分相互作用,改变它们的形态和定位,以及这如何影响细胞质组织和细胞形状,仍然不清楚。在这里,我们表明,在海鞘卵母细胞中,皮层肌动球蛋白流动的协同活动以及相邻富含线粒体的肌质的变形驱动了受精后卵母细胞的细胞质重组和形状变化。我们表明,卵母细胞受精后建立的向植物极的皮层肌动球蛋白流动,导致皮层肌动蛋白在合子的植物极积累,以及由于它们界面处产生的摩擦力,相邻的弹性固体状肌质层受到压缩和局部屈曲。一旦皮层流动停止,多个肌质屈曲合并为一个更大的屈曲,这再次驱动收缩极的形成——合子植物极的一个突出部分,母体mRNA在此积累。因此,我们的研究结果揭示了一种机制,即皮层肌动球蛋白网络流动通过摩擦力使相邻的细胞质成分变形,从而决定细胞质重组和细胞形状。