College of Electronic Engineering, South China Agricultural University, Guangzhou, China.
Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
J Sci Food Agric. 2024 Aug 15;104(10):5698-5711. doi: 10.1002/jsfa.13396. Epub 2024 Mar 4.
Quick and accurate detection of nutrient buds is essential for yield prediction and field management in tea plantations. However, the complexity of tea plantation environments and the similarity in color between nutrient buds and older leaves make the location of tea nutrient buds challenging.
This research presents a lightweight and efficient detection model, T-YOLO, for the accurate detection of tea nutrient buds in unstructured environments. First, a lightweight module, C2fG2, and an efficient feature extraction module, DBS, are introduced into the backbone and neck of the YOLOv5 baseline model. Second, the head network of the model is pruned to achieve further lightweighting. Finally, the dynamic detection head is integrated to mitigate the feature loss caused by lightweighting. The experimental data show that T-YOLO achieves a mean average precision (mAP) of 84.1%, the total number of parameters for model training (Params) is 11.26 million (M), and the number of floating-point operations (FLOPs) is 17.2 Giga (G). Compared with the baseline YOLOv5 model, T-YOLO reduces Params by 47% and lowers FLOPs by 65%. T-YOLO also outperforms the existing optimal detection YOLOv8 model by 7.5% in terms of mAP.
The T-YOLO model proposed in this study performs well in detecting small tea nutrient buds. It provides a decision-making basis for tea farmers to manage smart tea gardens. The T-YOLO model outperforms mainstream detection models on the public dataset, Global Wheat Head Detection (GWHD), which offers a reference for the construction of lightweight and efficient detection models for other small target crops. © 2024 Society of Chemical Industry.
快速准确地检测营养芽对于茶园的产量预测和田间管理至关重要。然而,茶园环境的复杂性以及营养芽和老叶之间的颜色相似性使得茶叶营养芽的定位变得具有挑战性。
本研究提出了一种轻量级且高效的检测模型 T-YOLO,用于在非结构化环境中准确检测茶叶营养芽。首先,将轻量级模块 C2fG2 和高效特征提取模块 DBS 引入 YOLOv5 基线模型的骨干和颈部。其次,修剪模型的头部网络以进一步实现轻量化。最后,集成动态检测头以减轻轻量化导致的特征损失。实验数据表明,T-YOLO 实现了 84.1%的平均精度(mAP),模型训练的参数总数(Params)为 1126 万(M),浮点运算次数(FLOPs)为 17.2 亿(G)。与基线 YOLOv5 模型相比,T-YOLO 减少了 47%的参数,并降低了 65%的 FLOPs。T-YOLO 在 mAP 方面也优于现有的最佳检测 YOLOv8 模型,性能提高了 7.5%。
本研究提出的 T-YOLO 模型在检测小茶叶营养芽方面表现良好。它为茶农管理智能茶园提供了决策依据。T-YOLO 模型在公共数据集 Global Wheat Head Detection (GWHD) 上的表现优于主流检测模型,为其他小目标作物的轻量级高效检测模型的构建提供了参考。