Suppr超能文献

半胱天冬酶-8在弓形虫感染期间从存活的人单核细胞中释放白细胞介素-1β和活性半胱天冬酶-1中的作用。

Role for Caspase-8 in the Release of IL-1β and Active Caspase-1 from Viable Human Monocytes during Toxoplasma gondii Infection.

作者信息

Pandori William J, Matsuno Stephanie Y, Shin Ji-Hun, Kim Samuel C, Kao Tiffany H, Mallya Sharmila, Batarseh Sarah N, Lodoen Melissa B

机构信息

Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, CA.

出版信息

J Immunol. 2024 Apr 1;212(7):1161-1171. doi: 10.4049/jimmunol.2200513.

Abstract

Monocytes are actively recruited to sites of infection and produce the potent proinflammatory cytokine IL-1β. We previously showed that IL-1β release during Toxoplasma gondii infection of primary human monocytes requires the NLRP3 inflammasome and caspase-1 but is independent of gasdermin D and pyroptosis. To investigate mechanisms of IL-1β release, we generated caspase-1, -4, -5, or -8 knockout (KO) THP-1 monocytic cells. Genetic ablation of caspase-1 or -8, but not caspase-4 or -5, decreased IL-1β release during T. gondii infection without affecting cell death. In contrast, TNF-α and IL-6 secretion were unperturbed in caspase-8 KO cells during T. gondii infection. Dual pharmacological inhibition of caspase-8 and RIPK1 in primary monocytes also decreased IL-1β release without affecting cell viability or parasite infection. Caspase-8 was also required for the release of active caspase-1 from T. gondii-infected cells and for IL-1β release during infection with the related apicomplexan parasite Neospora caninum. Surprisingly, caspase-8 deficiency did not impair synthesis or cleavage of pro-IL-1β, but resulted in the retention of mature IL-1β within cells. Generation of gasdermin E KO and ATG7 KO THP-1 cells revealed that the release of IL-1β was not dependent on gasdermin E or ATG7. Collectively, our data indicate that during T. gondii Infection of human monocytes, caspase-8 functions in a novel gasdermin-independent mechanism controlling IL-1β release from viable cells. This study expands on the molecular pathways that promote IL-1β in human immune cells and provides evidence of a role for caspase-8 in the mechanism of IL-1β release during infection.

摘要

单核细胞被积极招募到感染部位,并产生强效促炎细胞因子白细胞介素-1β(IL-1β)。我们之前表明,在原发性人类单核细胞感染刚地弓形虫期间,IL-1β的释放需要NLRP3炎性小体和半胱天冬酶-1,但不依赖于gasdermin D和细胞焦亡。为了研究IL-1β释放的机制,我们构建了半胱天冬酶-1、-4、-5或-8基因敲除(KO)的THP-1单核细胞。在刚地弓形虫感染期间,半胱天冬酶-1或-8的基因缺失而非半胱天冬酶-4或-5的缺失,会降低IL-1β的释放,且不影响细胞死亡。相比之下,在刚地弓形虫感染期间,半胱天冬酶-8基因敲除细胞中肿瘤坏死因子-α(TNF-α)和白细胞介素-6(IL-6)的分泌未受干扰。在原发性单核细胞中对半胱天冬酶-8和受体相互作用蛋白激酶1(RIPK1)进行双重药理学抑制,也会降低IL-1β的释放,且不影响细胞活力或寄生虫感染。在刚地弓形虫感染的细胞中,释放活性半胱天冬酶-1以及在感染相关顶复门寄生虫犬新孢子虫期间释放IL-1β也都需要半胱天冬酶-8。令人惊讶的是,半胱天冬酶-8缺陷并不损害前体IL-1β的合成或切割,但会导致成熟IL-1β在细胞内潴留。构建gasdermin E基因敲除和自噬相关蛋白7(ATG7)基因敲除的THP-1细胞表明,IL-1β的释放不依赖于gasdermin E或ATG7。总的来说,我们的数据表明,在人类单核细胞感染刚地弓形虫期间,半胱天冬酶-8通过一种新的不依赖于gasdermin的机制发挥作用,控制IL-1β从存活细胞中的释放。这项研究扩展了促进人类免疫细胞中IL-1β释放的分子途径,并为半胱天冬酶-8在感染期间IL-1β释放机制中的作用提供了证据。

相似文献

3
NLRP3 and Potassium Efflux Drive Rapid IL-1β Release from Primary Human Monocytes during Infection.
J Immunol. 2017 Oct 15;199(8):2855-2864. doi: 10.4049/jimmunol.1700245. Epub 2017 Sep 13.
4
Evasion of Human Neutrophil-Mediated Host Defense during Infection.
mBio. 2018 Feb 13;9(1):e02027-17. doi: 10.1128/mBio.02027-17.
7
9
Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes .
Front Immunol. 2020 Sep 30;11:565924. doi: 10.3389/fimmu.2020.565924. eCollection 2020.

引用本文的文献

3
-Mediated Reduction of Interleukin-1β Secretion and Its Association With Macrophage Autophagy.
Scientifica (Cairo). 2025 Mar 12;2025:3430892. doi: 10.1155/sci5/3430892. eCollection 2025.
5
6
Role of inflammasomes in Toxoplasma and Plasmodium infections.
Parasit Vectors. 2024 Nov 15;17(1):466. doi: 10.1186/s13071-024-06529-6.
7
Capers with caspases: Toxoplasma gondii tales of inflammation and survival.
Curr Opin Microbiol. 2023 Apr;72:102264. doi: 10.1016/j.mib.2023.102264. Epub 2023 Feb 13.

本文引用的文献

1
cFLIP regulates alternative NLRP3 inflammasome activation in human monocytes.
Cell Mol Immunol. 2023 Oct;20(10):1203-1215. doi: 10.1038/s41423-023-01077-y. Epub 2023 Aug 17.
2
Capers with caspases: Toxoplasma gondii tales of inflammation and survival.
Curr Opin Microbiol. 2023 Apr;72:102264. doi: 10.1016/j.mib.2023.102264. Epub 2023 Feb 13.
3
Caspase-8 inactivation drives autophagy-dependent inflammasome activation in myeloid cells.
Sci Adv. 2022 Nov 11;8(45):eabn9912. doi: 10.1126/sciadv.abn9912.
4
Inference of CRISPR Edits from Sanger Trace Data.
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
5
Emerging roles of ATG7 in human health and disease.
EMBO Mol Med. 2021 Dec 7;13(12):e14824. doi: 10.15252/emmm.202114824. Epub 2021 Nov 2.
6
Gasdermin E permits interleukin-1 beta release in distinct sublytic and pyroptotic phases.
Cell Rep. 2021 Apr 13;35(2):108998. doi: 10.1016/j.celrep.2021.108998.
7
8
An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages.
Cell Rep. 2020 Jul 28;32(4):107959. doi: 10.1016/j.celrep.2020.107959.
9
Multiple roles of caspase-8 in cell death, inflammation, and innate immunity.
J Leukoc Biol. 2021 Jan;109(1):121-141. doi: 10.1002/JLB.3MR0420-305R. Epub 2020 Jun 12.
10
Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis.
Nature. 2019 Nov;575(7784):683-687. doi: 10.1038/s41586-019-1770-6. Epub 2019 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验