Suppr超能文献

用于翻译后修饰的定点安装的正交翻译。

Orthogonal Translation for Site-Specific Installation of Post-translational Modifications.

机构信息

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.

Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States.

出版信息

Chem Rev. 2024 Mar 13;124(5):2805-2838. doi: 10.1021/acs.chemrev.3c00850. Epub 2024 Feb 19.

Abstract

Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.

摘要

翻译后修饰 (PTMs) 赋予蛋白质新的特性,以响应环境变化或生长需求。随着先进的蛋白质组学技术的发展,在细菌、古菌和真核生物的各种蛋白质中已经观察到数百种不同类型的 PTMs。为了确定这些 PTMs 的作用,科学家们已经应用了各种方法。然而,PTMs 的高动态性、低化学计量和相互作用使得几乎不可能获得均一修饰的蛋白质,从而无法对单个 PTM 对靶蛋白的特定位置的影响进行特征描述。为了解决这个问题,遗传密码扩展 (GCE) 策略已经被引入 PTM 研究领域。GCE 不是在翻译后修饰蛋白质,而是在翻译过程中将修饰的氨基酸掺入蛋白质中,从而在靶位置生成特异性修饰的蛋白质。在这篇综述中,我们总结了用于正交翻译的 GCE 系统的发展,用于在特定位置安装 PTMs。

相似文献

1
Orthogonal Translation for Site-Specific Installation of Post-translational Modifications.
Chem Rev. 2024 Mar 13;124(5):2805-2838. doi: 10.1021/acs.chemrev.3c00850. Epub 2024 Feb 19.
2
3
Co-translational Installation of Posttranslational Modifications by Non-canonical Amino Acid Mutagenesis.
Chembiochem. 2023 May 2;24(9):e202300039. doi: 10.1002/cbic.202300039. Epub 2023 Mar 30.
4
Recent Development of Genetic Code Expansion for Posttranslational Modification Studies.
Molecules. 2018 Jul 8;23(7):1662. doi: 10.3390/molecules23071662.
5
Expanding horizons: genetic code expansion technology in the study of PTM functions.
Bioorg Med Chem. 2025 Feb 1;118:118049. doi: 10.1016/j.bmc.2024.118049. Epub 2024 Dec 19.
7
Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications.
Oxid Med Cell Longev. 2018 Apr 23;2018:7607463. doi: 10.1155/2018/7607463. eCollection 2018.
8
Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches.
FEBS J. 2025 Jan;292(1):28-46. doi: 10.1111/febs.17108. Epub 2024 Mar 5.
9
Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation.
Mol Cell Proteomics. 2016 Aug;15(8):2715-29. doi: 10.1074/mcp.M115.054460. Epub 2016 Jun 14.
10
Chemical proteomics approaches for protein post-translational modification studies.
Biochim Biophys Acta Proteins Proteom. 2024 Jul 1;1872(4):141017. doi: 10.1016/j.bbapap.2024.141017. Epub 2024 Apr 18.

引用本文的文献

2
Directed evolution of aminoacyl-tRNA synthetases through in vivo hypermutation.
Nat Commun. 2025 May 24;16(1):4832. doi: 10.1038/s41467-025-60120-w.
3
Design and Biosynthesis of Ornithine 8-Containing Semaglutide Variants with a Click Chemistry-Modifiable Position 26.
ACS Synth Biol. 2025 May 16;14(5):1790-1801. doi: 10.1021/acssynbio.5c00132. Epub 2025 Apr 30.
4
Advances in the chemical synthesis of human proteoforms.
Sci China Life Sci. 2025 Apr 8. doi: 10.1007/s11427-024-2860-5.
5
Computationally Assisted Noncanonical Amino Acid Incorporation.
ACS Cent Sci. 2024 Dec 16;11(1):84-90. doi: 10.1021/acscentsci.4c01544. eCollection 2025 Jan 22.
6
DECODE enables high-throughput mapping of antibody epitopes at single amino acid resolution.
PLoS Biol. 2025 Jan 23;23(1):e3002707. doi: 10.1371/journal.pbio.3002707. eCollection 2025 Jan.
7
Opposing roles of p38α-mediated phosphorylation and PRMT1-mediated arginine methylation in driving TDP-43 proteinopathy.
Cell Rep. 2025 Jan 28;44(1):115205. doi: 10.1016/j.celrep.2024.115205. Epub 2025 Jan 14.
8
Diverse perspectives on proteomic posttranslational modifications to address EGFR-TKI resistance in non-small cell lung cancer.
Front Cell Dev Biol. 2024 Dec 24;12:1436033. doi: 10.3389/fcell.2024.1436033. eCollection 2024.
9
Suppression of amber stop codons impairs pathogenicity in Salmonella.
FEBS Lett. 2025 Feb;599(4):476-487. doi: 10.1002/1873-3468.15075. Epub 2024 Dec 12.
10
Site-Specific and Fluorescently Enhanced Installation of Post-Translational Protein Modifications via Bifunctional Biarsenical Linker.
ACS Omega. 2024 Oct 30;9(45):45127-45137. doi: 10.1021/acsomega.4c05828. eCollection 2024 Nov 12.

本文引用的文献

1
Improving the Efficiency and Orthogonality of Genetic Code Expansion.
Biodes Res. 2022 Jun 6;2022:9896125. doi: 10.34133/2022/9896125. eCollection 2022.
2
ADP-ribosylation from molecular mechanisms to therapeutic implications.
Cell. 2023 Oct 12;186(21):4475-4495. doi: 10.1016/j.cell.2023.08.030.
3
Protein acetylation and related potential therapeutic strategies in kidney disease.
Pharmacol Res. 2023 Nov;197:106950. doi: 10.1016/j.phrs.2023.106950. Epub 2023 Oct 17.
4
5
Citrullination and the protein code: crosstalk between post-translational modifications in cancer.
Philos Trans R Soc Lond B Biol Sci. 2023 Nov 20;378(1890):20220243. doi: 10.1098/rstb.2022.0243. Epub 2023 Oct 2.
6
Lysine lactylation regulates metabolic pathways and biofilm formation in .
Sci Signal. 2023 Sep 5;16(801):eadg1849. doi: 10.1126/scisignal.adg1849.
7
Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases.
Genes Dis. 2022 Nov 29;10(6):2479-2490. doi: 10.1016/j.gendis.2022.10.025. eCollection 2023 Nov.
8
Unveiling the human nitroproteome: Protein tyrosine nitration in cell signaling and cancer.
J Biol Chem. 2023 Aug;299(8):105038. doi: 10.1016/j.jbc.2023.105038. Epub 2023 Jul 12.
9
Critical Roles of Protein Arginine Methylation in the Central Nervous System.
Mol Neurobiol. 2023 Oct;60(10):6060-6091. doi: 10.1007/s12035-023-03465-x. Epub 2023 Jul 6.
10
Protein post-translational modification by lysine succinylation: Biochemistry, biological implications, and therapeutic opportunities.
Genes Dis. 2022 Apr 7;10(4):1242-1262. doi: 10.1016/j.gendis.2022.03.009. eCollection 2023 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验