Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands.
Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands.
J Am Soc Mass Spectrom. 2024 Mar 6;35(3):590-602. doi: 10.1021/jasms.3c00418. Epub 2024 Feb 21.
Untargeted metabolomics based on reverse phase LC-MS (RPLC-MS) plays a crucial role in biomarker discovery across physiological and disease states. Standardizing the development process of untargeted methods requires paying attention to critical factors that are under discussed or easily overlooked, such as injection parameters, performance assessment, and matrix effect evaluation. In this study, we developed an untargeted metabolomics method for plasma and fecal samples with the optimization and evaluation of these factors. Our results showed that optimizing the reconstitution solvent and sample injection amount was critical for achieving the balance between metabolites coverage and signal linearity. Method validation with representative stable isotopically labeled standards (SILs) provided insights into the analytical performance evaluation of our method. To tackle the issue of the matrix effect, we implemented a postcolumn infusion (PCI) approach to monitor the overall absolute matrix effect (AME) and relative matrix effect (RME). The monitoring revealed distinct AME and RME profiles in plasma and feces. Comparing RME data obtained for SILs through postextraction spiking with those monitored using PCI compounds demonstrated the comparability of these two methods for RME assessment. Therefore, we applied the PCI approach to predict the RME of 305 target compounds covered in our in-house library and found that targets detected in the negative polarity were more vulnerable to the RME, regardless of the sample matrix. Given the value of this PCI approach in identifying the strengths and weaknesses of our method in terms of the matrix effect, we recommend implementing a PCI approach during method development and applying it routinely in untargeted metabolomics.
基于反相液相色谱-质谱联用技术(RPLC-MS)的非靶向代谢组学在生理和疾病状态下的生物标志物发现中起着至关重要的作用。为了标准化非靶向方法的开发过程,需要注意一些尚未讨论或容易被忽视的关键因素,如注入参数、性能评估和基质效应评估。在这项研究中,我们针对血浆和粪便样本开发了一种非靶向代谢组学方法,并对这些因素进行了优化和评估。结果表明,优化复溶溶剂和进样量对于在代谢物覆盖率和信号线性之间取得平衡至关重要。使用代表性的稳定同位素标记标准品(SILs)进行方法验证为我们的方法的分析性能评估提供了深入的见解。为了解决基质效应问题,我们采用柱后注入(PCI)方法来监测整体绝对基质效应(AME)和相对基质效应(RME)。监测结果显示,血浆和粪便中存在明显的 AME 和 RME 特征。通过比较通过提取后添加 SILs 获得的 RME 数据与使用 PCI 化合物监测到的数据,证明了这两种方法在 RME 评估方面的可比性。因此,我们应用 PCI 方法来预测我们内部库中涵盖的 305 个目标化合物的 RME,并发现无论样本基质如何,在负极性下检测到的目标化合物更容易受到 RME 的影响。鉴于该 PCI 方法在识别我们的方法在基质效应方面的优缺点方面的价值,我们建议在方法开发过程中采用 PCI 方法,并在非靶向代谢组学中常规应用。