Suppr超能文献

基于子宫内膜癌病理图像的联邦学习与集中式学习性能比较研究

A Comparative Study of Performance Between Federated Learning and Centralized Learning Using Pathological Image of Endometrial Cancer.

机构信息

Department of Bio-health Medical Engineering, Gachon University, Seongnam, Republic of Korea.

Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.

出版信息

J Imaging Inform Med. 2024 Aug;37(4):1683-1690. doi: 10.1007/s10278-024-01020-1. Epub 2024 Feb 21.

Abstract

Federated learning, an innovative artificial intelligence training method, offers a secure solution for institutions to collaboratively develop models without sharing raw data. This approach offers immense promise and is particularly advantageous for domains dealing with sensitive information, such as patient data. However, when confronted with a distributed data environment, challenges arise due to data paucity or inherent heterogeneity, potentially impacting the performance of federated learning models. Hence, scrutinizing the efficacy of this method in such intricate settings is indispensable. To address this, we harnessed pathological image datasets of endometrial cancer from four hospitals for training and evaluating the performance of a federated learning model and compared it with a centralized learning model. With optimal processing techniques (data augmentation, color normalization, and adaptive optimizer), federated learning exhibited lower precision but higher recall and Dice similarity coefficient (DSC) than centralized learning. Hence, considering the critical importance of recall in the context of medical image processing, federated learning is demonstrated as a viable and applicable approach in this field, offering advantages in terms of both performance and data security.

摘要

联邦学习是一种创新的人工智能训练方法,为机构提供了一种安全的解决方案,无需共享原始数据即可协作开发模型。这种方法具有巨大的潜力,特别是在处理敏感信息的领域,如患者数据。然而,在面对分布式数据环境时,由于数据匮乏或固有异质性,可能会影响联邦学习模型的性能,从而出现挑战。因此,在这种复杂的环境下仔细研究这种方法的效果是必不可少的。为了解决这个问题,我们利用来自四家医院的子宫内膜癌病理图像数据集进行训练和评估联邦学习模型的性能,并将其与集中式学习模型进行比较。通过使用最优的处理技术(数据增强、颜色归一化和自适应优化器),联邦学习的精度低于集中式学习,但召回率和 Dice 相似系数(DSC)更高。因此,考虑到在医学图像处理中召回率的重要性,联邦学习在该领域被证明是一种可行且适用的方法,在性能和数据安全性方面都具有优势。

相似文献

1
A Comparative Study of Performance Between Federated Learning and Centralized Learning Using Pathological Image of Endometrial Cancer.
J Imaging Inform Med. 2024 Aug;37(4):1683-1690. doi: 10.1007/s10278-024-01020-1. Epub 2024 Feb 21.
2
Decentralized Distributed Multi-institutional PET Image Segmentation Using a Federated Deep Learning Framework.
Clin Nucl Med. 2022 Jul 1;47(7):606-617. doi: 10.1097/RLU.0000000000004194. Epub 2022 Apr 20.
3
Federated Learning for Decentralized Artificial Intelligence in Melanoma Diagnostics.
JAMA Dermatol. 2024 Mar 1;160(3):303-311. doi: 10.1001/jamadermatol.2023.5550.
4
Multi-institutional PET/CT image segmentation using federated deep transformer learning.
Comput Methods Programs Biomed. 2023 Oct;240:107706. doi: 10.1016/j.cmpb.2023.107706. Epub 2023 Jul 12.
5
Multidisciplinary cancer disease classification using adaptive FL in healthcare industry 5.0.
Sci Rep. 2024 Aug 12;14(1):18643. doi: 10.1038/s41598-024-68919-1.
6
Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data.
Ophthalmol Sci. 2021 Oct 8;1(4):100069. doi: 10.1016/j.xops.2021.100069. eCollection 2021 Dec.
7
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):92-105. doi: 10.1016/j.ogla.2024.08.004. Epub 2024 Aug 29.
8
Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach.
J Imaging Inform Med. 2024 Aug;37(4):1488-1504. doi: 10.1007/s10278-024-01035-8. Epub 2024 Feb 29.
9
Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning.
Eur J Nucl Med Mol Imaging. 2023 Mar;50(4):1034-1050. doi: 10.1007/s00259-022-06053-8. Epub 2022 Dec 12.
10
Federated brain tumor segmentation: An extensive benchmark.
Med Image Anal. 2024 Oct;97:103270. doi: 10.1016/j.media.2024.103270. Epub 2024 Jul 14.

本文引用的文献

1
A tool for federated training of segmentation models on whole slide images.
J Pathol Inform. 2022 May 21;13:100101. doi: 10.1016/j.jpi.2022.100101. eCollection 2022.
2
Federated Learning in Medical Imaging: Part I: Toward Multicentral Health Care Ecosystems.
J Am Coll Radiol. 2022 Aug;19(8):969-974. doi: 10.1016/j.jacr.2022.03.015. Epub 2022 Apr 26.
3
Federated Learning in Medical Imaging: Part II: Methods, Challenges, and Considerations.
J Am Coll Radiol. 2022 Aug;19(8):975-982. doi: 10.1016/j.jacr.2022.03.016. Epub 2022 Apr 25.
4
Federated learning and differential privacy for medical image analysis.
Sci Rep. 2022 Feb 4;12(1):1953. doi: 10.1038/s41598-022-05539-7.
5
The future of digital health with federated learning.
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.
7
Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images.
IEEE Trans Med Imaging. 2016 Aug;35(8):1962-71. doi: 10.1109/TMI.2016.2529665. Epub 2016 Apr 27.
8
Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting.
J Cutan Pathol. 2008 Apr;35(4):349-52. doi: 10.1111/j.1600-0560.2007.00970.x.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验