Suppr超能文献

CGO-ensemble:基于混沌游戏优化算法的深度神经网络融合,用于准确检测猴痘。

CGO-ensemble: Chaos game optimization algorithm-based fusion of deep neural networks for accurate Mpox detection.

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

School of Mathematics, Hunan University, Changsha, China.

出版信息

Neural Netw. 2024 May;173:106183. doi: 10.1016/j.neunet.2024.106183. Epub 2024 Feb 16.

Abstract

The rising global incidence of human Mpox cases necessitates prompt and accurate identification for effective disease control. Previous studies have predominantly delved into traditional ensemble methods for detection, we introduce a novel approach by leveraging a metaheuristic-based ensemble framework. In this research, we present an innovative CGO-Ensemble framework designed to elevate the accuracy of detecting Mpox infection in patients. Initially, we employ five transfer learning base models that integrate feature integration layers and residual blocks. These components play a crucial role in capturing significant features from the skin images, thereby enhancing the models' efficacy. In the next step, we employ a weighted averaging scheme to consolidate predictions generated by distinct models. To achieve the optimal allocation of weights for each base model in the ensemble process, we leverage the Chaos Game Optimization (CGO) algorithm. This strategic weight assignment enhances classification outcomes considerably, surpassing the performance of randomly assigned weights. Implementing this approach yields notably enhanced prediction accuracy compared to using individual models. We evaluate the effectiveness of our proposed approach through comprehensive experiments conducted on two widely recognized benchmark datasets: the Mpox Skin Lesion Dataset (MSLD) and the Mpox Skin Image Dataset (MSID). To gain insights into the decision-making process of the base models, we have performed Gradient Class Activation Mapping (Grad-CAM) analysis. The experimental results showcase the outstanding performance of the CGO-ensemble, achieving an impressive accuracy of 100% on MSLD and 94.16% on MSID. Our approach significantly outperforms other state-of-the-art optimization algorithms, traditional ensemble methods, and existing techniques in the context of Mpox detection on these datasets. These findings underscore the effectiveness and superiority of the CGO-Ensemble in accurately identifying Mpox cases, highlighting its potential in disease detection and classification.

摘要

全球人类猴痘病例不断增加,需要及时准确地识别,以有效控制疾病。先前的研究主要集中在传统的集成方法检测上,我们引入了一种新的方法,利用基于元启发式的集成框架。在这项研究中,我们提出了一种新颖的 CGO-Ensemble 框架,旨在提高检测患者中猴痘感染的准确性。

首先,我们使用五个转移学习基础模型,这些模型集成了特征整合层和残差块。这些组件在从皮肤图像中捕获重要特征方面发挥了关键作用,从而提高了模型的效能。

下一步,我们采用加权平均方案来整合不同模型生成的预测。为了在集成过程中为每个基础模型分配最优的权重,我们利用混沌游戏优化(CGO)算法。这种策略性的权重分配大大提高了分类结果,优于随机分配权重的效果。

与单独使用模型相比,实施该方法可显著提高预测准确性。我们通过在两个广泛认可的基准数据集上进行全面实验,评估了我们提出的方法的有效性:猴痘皮肤病变数据集(MSLD)和猴痘皮肤图像数据集(MSID)。为了深入了解基础模型的决策过程,我们进行了梯度类激活映射(Grad-CAM)分析。

实验结果展示了 CGO-ensemble 的出色性能,在 MSLD 上达到了 100%的惊人准确性,在 MSID 上达到了 94.16%的准确性。我们的方法在这些数据集上的猴痘检测方面明显优于其他最先进的优化算法、传统集成方法和现有技术。这些发现突出了 CGO-Ensemble 在准确识别猴痘病例方面的有效性和优越性,凸显了其在疾病检测和分类方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验