Suppr超能文献

浙江省尚城区社区成年人血脂异常及其相关因素。

Dyslipidemia and its associated factors among community adults located in Shangcheng district, Zhejiang province.

机构信息

Center for Disease Control and Prevention of Shangcheng District, Hangzhou, Zhejiang, China.

Hangzhou First People's Hospital, Hangzhou, Zhejiang, China.

出版信息

Sci Rep. 2024 Feb 21;14(1):4268. doi: 10.1038/s41598-024-54953-6.

Abstract

Dyslipidemia is highly prevalent and an important modifiable risk factor of cardiovascular disease in China. However, there is little information on the dyslipidemia in Shangcheng district, eastern China. Therefore, this study aims to investigate the prevalence and associated factors of dyslipidemia among community adults in this area. A community based cross-sectional study was conducted from August 1 to November 30, 2020. The study utilized a multi-stage probability sampling method to enroll permanent residents (those who have resided in this region for 6 months or more) who were 18 years old or above. Firstly, five streets were selected randomly, and then two communities were randomly selected from each of the chosen streets, finally, systematic sampling at the household level was conducted. All participants were interviewed by trained investigators and underwent anthropometric and biochemical measurements using standard criteria. LASSO (least absolute shrinkage and selection operator) and multivariate binary logistic regression were employed to identify the factors associated with dyslipidemia. In total, 3153 participants were enrolled into this study, resulting in a response rate of 93.28%. 33 subjects were excluded because of incomplete data. Finally, 3120 participants with a mean age of 55.26 (SD = 17.97) years were included into analysis. The overall prevalence of dyslipidemia was 35.96%. 21 variables were screened to multivariate binary logistic regression through the implementation of LASSO method. The multivariate binary logistic regression analysis revealed that individuals aged 40-49 [adjusted odds ratio (aOR) = 2.197, 95% confidence interval (CI) 1.445-3.341], 50-59 (aOR = 3.213, 95% CI 2.121-4.868), 60-69 (aOR = 4.777, 95% CI 3.169-7.201), and 70 and above (aOR = 5.067, 95% CI 3.301-7.777), with an educational level of junior middle school (aOR = 1.503, 95% CI 1.013-2.229), with an educational level of senior middle school (aOR = 1.731, 95% CI 1.25-2.397), with an educational level of under graduate and above (aOR = 2.125, 95% CI 1.46-3.095), without hypertension (aOR = 0.627, 95% CI 0.517-0.76), without diabetes (aOR = 0.625, 95% CI 0.498-0.785), obesity (aOR = 1.887, 95% CI 1.13-3.154), frequent smoking (aOR = 1.727, 95% CI 1.293-2.308), frequent drinking (aOR = 0.738, 95% CI 0.556-0.981), without family history of CVD (aOR = 0.505, 95% CI 0.342-0.744), and daily seafood intakes between 42.87 and 71.43 g (aOR = 1.31, 95% CI 1.05-1.634) were significantly associated with dyslipidemia. Gender-stratified analyses showed that aged 70 and above (aOR = 2.127, 95% CI 1.195-3.785), without hypertension (aOR = 0.643, 95% CI 0.484-0.854), without diabetes (aOR = 0.603, 95% CI 0.436-0.834), without CVD (aOR = 0.494, 95% CI 0.309-0.791), without stroke (aOR = 1.767, 95% CI 1.036-3.012), frequent smoking (aOR = 1.951, 95% CI 1.415-2.691), former smoking (aOR = 1.703, 95% CI 1.16-2.502) were significantly associated with dyslipidemia in male. Aged 40-49 (aOR = 3.51, 95% CI 1.789-6.887), 50-59 (aOR = 7.03, 95% CI 3.584-13.791), 60-69 (aOR = 15.728, 95% CI 8.005-30.9), and 70 and above (aOR = 12.929, 95% CI 6.449-25.921), with an educational level of senior middle school (aOR = 1.926, 95% CI 1.288-2.881), with an educational level of under graduate and above (aOR = 2.91, 95% CI 1.75-4.837), without hypertension (aOR = 0.592, 95% CI 0.45-0.779), without diabetes (aOR = 0.619, 95% CI 0.443-0.865), without family history of CVD (aOR = 0.429, 95% CI 0.251-0.733), without family history of cancer (aOR = 0.542, 95% CI 0.316-0.929), daily vegetables intakes between 251 and 500 g (aOR = 0.734, 95% CI 0.545-0.99), daily seafood intakes between 42.87 and 71.43 g (aOR = 1.421, 95% CI 1.04-1.942) were significantly associated with dyslipidemia in female. In the age-stratified analyses, it was found that without hypertension (aOR = 0.522, 95% CI 0.375-0.727) or diabetes (aOR = 0.445, 95% CI 0.267-0.744), obesity (aOR = 2.956, 95% CI 1.258-6.942), frequent smoking (aOR = 1.826, 95% CI 1.196-2.787), showed a significant association with dyslipidemia in individuals aged younger than 60 years. Female (aOR = 1.764, 95% CI 1.316-2.366), with an educational level of junior middle school (aOR = 1.793, 95% CI 1.169-2.749), with an educational level of senior middle school (aOR = 2.002, 95% CI 1.406-2.849), with an educational level of under graduate and above (aOR = 2.849, 95% CI 1.791-4.532), without hypertension (aOR = 0.604, 95% CI 0.477-0.764), without diabetes (aOR = 0.63, 95% CI 0.486-0.818), without CVD (aOR = 0.66, 95% CI 0.473-0.921), frequent smoking (aOR = 1.513, 95% CI 1.02-2.245), former smoking (aOR = 1.647, 95% CI 1.089-2.491), without family history of CVD (aOR = 0.406, 95% CI 0.239-0.692), daily seafood intakes between 42.87 and 71.43 g (aOR = 1.376, 95% CI 1.018-1.859) were significantly associated with dyslipidemia among participants aged 60 and above. Dyslipidemia is a prevalent condition observed among adults residing in Shangcheng district. Risk factors such as gender, age, education, hypertension, diabetes, cardiovascular disease, stroke, obesity, smoking, drinking, family history of cardiovascular disease, family history of cancer, daily vegetables intakes, daily seafood intakes were associated with dyslipidemia and varied across population of different gender and age groups. Enhancing education and promoting self-awareness regarding the necessity of behavior modification and regular medication intake would be beneficial in reducing the occurrence of dyslipidemia among adults in the Shangcheng district.

摘要

血脂异常在中国是一种普遍存在且可改变的心血管疾病重要危险因素。然而,关于中国尚城区的血脂异常情况,我们知之甚少。因此,本研究旨在调查该地区社区成年人血脂异常的患病率及其相关因素。

这是一项基于社区的横断面研究,于 2020 年 8 月 1 日至 11 月 30 日进行。采用多阶段概率抽样方法,从尚城区招募年龄在 18 岁及以上的常住居民(在该地区居住 6 个月或以上的居民)作为研究对象。首先,随机选择 5 条街道,然后从每条选定的街道中随机选择 2 个社区,最后,在家庭层面进行系统抽样。所有参与者均由经过培训的调查员进行访谈,并采用标准标准进行人体测量和生化测量。使用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)和多元二项逻辑回归来识别与血脂异常相关的因素。

共纳入 3153 名参与者,应答率为 93.28%。33 名参与者因数据不完整而被排除。最终,3120 名平均年龄为 55.26(标准差 17.97)岁的参与者被纳入分析。血脂异常的总患病率为 35.96%。通过 LASSO 方法筛选出 21 个变量,用于多元二项逻辑回归。多元二项逻辑回归分析表明,年龄在 40-49 岁(调整后的优势比[aOR]为 2.197,95%置信区间 [CI] 为 1.445-3.341)、50-59 岁(aOR 为 3.213,95%CI 为 2.121-4.868)、60-69 岁(aOR 为 4.777,95%CI 为 3.169-7.201)和 70 岁及以上(aOR 为 5.067,95%CI 为 3.301-7.777)、初中及以下文化程度(aOR 为 1.503,95%CI 为 1.013-2.229)、高中及以上文化程度(aOR 为 1.731,95%CI 为 1.25-2.397)、无高血压(aOR 为 0.627,95%CI 为 0.517-0.76)、无糖尿病(aOR 为 0.625,95%CI 为 0.498-0.785)、无心血管疾病家族史(aOR 为 0.505,95%CI 为 0.342-0.744)和每日海鲜摄入量在 42.87-71.43g 之间(aOR 为 1.31,95%CI 为 1.05-1.634)与血脂异常显著相关。

分层分析表明,70 岁及以上(aOR 为 2.127,95%CI 为 1.195-3.785)、无高血压(aOR 为 0.643,95%CI 为 0.484-0.854)、无糖尿病(aOR 为 0.603,95%CI 为 0.436-0.834)、无心血管疾病(aOR 为 0.494,95%CI 为 0.309-0.791)、无卒史(aOR 为 1.767,95%CI 为 1.036-3.012)、经常吸烟(aOR 为 1.951,95%CI 为 1.415-2.691)、曾经吸烟(aOR 为 1.703,95%CI 为 1.16-2.502)与男性血脂异常显著相关。年龄在 40-49 岁(aOR 为 3.51,95%CI 为 1.789-6.887)、50-59 岁(aOR 为 7.03,95%CI 为 3.584-13.791)、60-69 岁(aOR 为 15.728,95%CI 为 8.005-30.9)和 70 岁及以上(aOR 为 12.929,95%CI 为 6.449-25.921)、高中及以上文化程度(aOR 为 1.926,95%CI 为 1.288-2.881)、本科及以上文化程度(aOR 为 2.91,95%CI 为 1.75-4.837)、无高血压(aOR 为 0.592,95%CI 为 0.45-0.779)、无糖尿病(aOR 为 0.619,95%CI 为 0.443-0.865)、无心血管疾病家族史(aOR 为 0.429,95%CI 为 0.251-0.733)、无癌症家族史(aOR 为 0.542,95%CI 为 0.316-0.929)、每日蔬菜摄入量在 251-500g 之间(aOR 为 0.734,95%CI 为 0.545-0.99)、每日海鲜摄入量在 42.87-71.43g 之间(aOR 为 1.421,95%CI 为 1.04-1.942)与女性血脂异常显著相关。在年龄分层分析中,发现无高血压(aOR 为 0.522,95%CI 为 0.375-0.727)或糖尿病(aOR 为 0.445,95%CI 为 0.267-0.744)、肥胖(aOR 为 2.956,95%CI 为 1.258-6.942)、经常吸烟(aOR 为 1.826,95%CI 为 1.196-2.787)与 60 岁以下人群血脂异常有关。女性(aOR 为 1.764,95%CI 为 1.316-2.366)、初中及以下文化程度(aOR 为 1.793,95%CI 为 1.169-2.749)、高中及以上文化程度(aOR 为 2.002,95%CI 为 1.406-2.849)、本科及以上文化程度(aOR 为 2.849,95%CI 为 1.791-4.532)、无高血压(aOR 为 0.604,95%CI 为 0.477-0.76

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf98/10881990/93f1889f8a3c/41598_2024_54953_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验