Zhang Ting, Yuk Lin Lai Joshua, Shi Mingzhe, Li Qing, Zhang Chen, Yan He
Department of Computing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, KLN, Hong Kong, 999077, China.
Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
Adv Sci (Weinh). 2024 May;11(17):e2308652. doi: 10.1002/advs.202308652. Epub 2024 Feb 22.
Non-fullerene acceptors (NFAs) have recently emerged as pivotal materials for enhancing the efficiency of organic solar cells (OSCs). To further advance OSC efficiency, precise control over the energy levels of NFAs is imperative, necessitating the development of a robust computational method for accurate energy level predictions. Unfortunately, conventional computational techniques often yield relatively large errors, typically ranging from 0.2 to 0.5 electronvolts (eV), when predicting energy levels. In this study, the authors present a novel method that not only expedites energy level predictions but also significantly improves accuracy , reducing the error margin to 0.06 eV. The method comprises two essential components. The first component involves data cleansing, which systematically eliminates problematic experimental data and thereby minimizes input data errors. The second component introduces a molecular description method based on the electronic properties of the sub-units comprising NFAs. The approach simplifies the intricacies of molecular computation and demonstrates markedly enhanced prediction performance compared to the conventional density functional theory (DFT) method. Our methodology will expedite research in the field of NFAs, serving as a catalyst for the development of similar computational approaches to address challenges in other areas of material science and molecular research.
非富勒烯受体(NFAs)最近已成为提高有机太阳能电池(OSCs)效率的关键材料。为了进一步提高OSC效率,精确控制NFAs的能级势在必行,这就需要开发一种强大的计算方法来进行准确的能级预测。不幸的是,传统的计算技术在预测能级时往往会产生相对较大的误差,通常在0.2到0.5电子伏特(eV)之间。在本研究中,作者提出了一种新方法,该方法不仅加快了能级预测速度,还显著提高了准确性,将误差幅度降低到了0.06 eV。该方法包括两个基本组成部分。第一个组成部分涉及数据清理,它系统地消除有问题的实验数据,从而将输入数据误差降至最低。第二个组成部分引入了一种基于构成NFAs的亚基电子性质的分子描述方法。该方法简化了分子计算的复杂性,与传统的密度泛函理论(DFT)方法相比,其预测性能有了显著提高。我们的方法将加快NFAs领域的研究,成为开发类似计算方法以应对材料科学和分子研究其他领域挑战的催化剂。