Suppr超能文献

冷冻电子显微镜揭示天然心脏细肌丝中的肌钙蛋白结构动力学

Troponin Structural Dynamics in the Native Cardiac Thin Filament Revealed by Cryo Electron Microscopy.

作者信息

Risi Cristina M, Belknap Betty, Atherton Jennifer, Coscarella Isabella Leite, White Howard D, Bryant Chase P, Pinto Jose R, Galkin Vitold E

机构信息

Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.

Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA.

出版信息

J Mol Biol. 2024 Mar 15;436(6):168498. doi: 10.1016/j.jmb.2024.168498. Epub 2024 Feb 20.

Abstract

Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca levels and that the two strands are structurally distinct. At high Ca levels, cTF is not entirely activated by Ca but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.

摘要

心肌收缩是由于肌球蛋白粗丝和肌动蛋白细丝(TF)之间的重复相互作用,这种相互作用受钙离子水平、活性横桥和心肌肌球蛋白结合蛋白C(cMyBP-C)调节。心脏TF(cTF)有两条不等同的链,每条链由肌动蛋白、原肌球蛋白(Tm)和肌钙蛋白(Tn)组成。在钙离子水平升高时,Tn会将Tm从肌动蛋白上的肌球蛋白结合位点移开,以允许形成产生力的肌动球蛋白横桥。Tn复合物由三种不同的多肽组成——钙离子结合TnC、抑制性TnI和Tm结合TnT。由于缺乏关于cTF的Tn区域的全面结构信息,它们共同作用的分子机制尚未得到解决。在没有钙离子的情况下,cMyBP-C的C1结构域将cTF激活到与僵直肌球蛋白相同的程度。在这里,我们使用天然cTF的冷冻电镜技术表明,cTF的Tn核心在高钙和低钙水平下采用多种结构构象,并且两条链在结构上是不同的。在高钙水平下,cTF并非完全被钙离子激活,而是处于部分或完全激活状态。TnI C末端的完全解离是完全激活所必需的。在存在cMyBP-C C1结构域的情况下,即使没有钙离子,Tn核心也会采用完全激活的构象。我们的数据为肌球蛋白完全激活cTF的要求提供了结构描述,并解释了在存在活性横桥的情况下TnC对钙离子亲和力增加的原因。我们认为,Tn亚基和Tm之间的变构偶联是控制肌动球蛋白相互作用所必需的。

相似文献

1
Troponin Structural Dynamics in the Native Cardiac Thin Filament Revealed by Cryo Electron Microscopy.
J Mol Biol. 2024 Mar 15;436(6):168498. doi: 10.1016/j.jmb.2024.168498. Epub 2024 Feb 20.
2
Regulation of contraction in striated muscle.
Physiol Rev. 2000 Apr;80(2):853-924. doi: 10.1152/physrev.2000.80.2.853.
3
High-resolution cryo-EM structure of the junction region of the native cardiac thin filament in relaxed state.
PNAS Nexus. 2022 Dec 16;2(1):pgac298. doi: 10.1093/pnasnexus/pgac298. eCollection 2023 Jan.
4
Cryo-Electron Microscopy Reveals Cardiac Myosin Binding Protein-C M-Domain Interactions with the Thin Filament.
J Mol Biol. 2022 Dec 30;434(24):167879. doi: 10.1016/j.jmb.2022.167879. Epub 2022 Nov 10.
5
Ca(2+)-dependent, myosin subfragment 1-induced proximity changes between actin and the inhibitory region of troponin I.
Biochim Biophys Acta. 2001 Oct 18;1549(2):148-54. doi: 10.1016/s0167-4838(01)00254-0.
6
Interaction of the C2 Ig-like Domain of Cardiac Myosin Binding Protein-C with F-actin.
J Mol Biol. 2021 Sep 17;433(19):167178. doi: 10.1016/j.jmb.2021.167178. Epub 2021 Jul 27.
7
Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments.
J Mol Biol. 2006 Aug 18;361(3):420-35. doi: 10.1016/j.jmb.2006.05.078. Epub 2006 Jun 30.
8
C-terminal troponin-I residues trap tropomyosin in the muscle thin filament blocked-state.
Biochem Biophys Res Commun. 2021 Apr 30;551:27-32. doi: 10.1016/j.bbrc.2021.03.010. Epub 2021 Mar 11.
10
The structure of the native cardiac thin filament at systolic Ca levels.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2024288118.

引用本文的文献

1
Troponin I - a comprehensive review of its function, structure, evolution, and role in muscle diseases.
Anim Cells Syst (Seoul). 2025 Jul 28;29(1):446-468. doi: 10.1080/19768354.2025.2533821. eCollection 2025.
3
Resolving the structure and dynamics of the disordered C terminus of human cardiac troponin T and effects of cardiomyopathic mutations.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2425343122. doi: 10.1073/pnas.2425343122. Epub 2025 Jul 8.
5
Screening single nucleotide changes to tropomyosin to identify novel cardiomyopathy mutants.
J Mol Cell Cardiol. 2025 Jun;203:82-90. doi: 10.1016/j.yjmcc.2025.04.009. Epub 2025 Apr 21.
6
Velcro-binding by cardiac troponin-I traps tropomyosin on actin in a low-energy relaxed state.
Biochem Biophys Res Commun. 2025 Apr 9;757:151595. doi: 10.1016/j.bbrc.2025.151595. Epub 2025 Mar 8.
7
Dual-filament regulation of relaxation in mammalian fast skeletal muscle.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2416324122. doi: 10.1073/pnas.2416324122. Epub 2025 Mar 12.
8
Interaction of cardiac leiomodin with the native cardiac thin filament.
PLoS Biol. 2025 Jan 30;23(1):e3003027. doi: 10.1371/journal.pbio.3003027. eCollection 2025 Jan.
9
Structural changes in troponin during activation of skeletal and heart muscle determined in situ by polarised fluorescence.
Biophys Rev. 2024 Oct 19;16(6):753-772. doi: 10.1007/s12551-024-01245-y. eCollection 2024 Dec.

本文引用的文献

1
Cryo-EM structure of the human cardiac myosin filament.
Nature. 2023 Nov;623(7988):853-862. doi: 10.1038/s41586-023-06691-4. Epub 2023 Nov 1.
2
Structure of the native myosin filament in the relaxed cardiac sarcomere.
Nature. 2023 Nov;623(7988):863-871. doi: 10.1038/s41586-023-06690-5. Epub 2023 Nov 1.
3
High-resolution cryo-EM structure of the junction region of the native cardiac thin filament in relaxed state.
PNAS Nexus. 2022 Dec 16;2(1):pgac298. doi: 10.1093/pnasnexus/pgac298. eCollection 2023 Jan.
4
Cryo-Electron Microscopy Reveals Cardiac Myosin Binding Protein-C M-Domain Interactions with the Thin Filament.
J Mol Biol. 2022 Dec 30;434(24):167879. doi: 10.1016/j.jmb.2022.167879. Epub 2022 Nov 10.
5
Modeling Human Cardiac Thin Filament Structures.
Front Physiol. 2022 Jun 22;13:932333. doi: 10.3389/fphys.2022.932333. eCollection 2022.
6
Free-Energy Surfaces of Two Cardiac Thin Filament Conformational Changes during Muscle Contraction.
J Phys Chem B. 2022 Jun 2;126(21):3844-3851. doi: 10.1021/acs.jpcb.2c01337. Epub 2022 May 18.
8
The structure of the native cardiac thin filament at systolic Ca levels.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2024288118.
9
C-terminal troponin-I residues trap tropomyosin in the muscle thin filament blocked-state.
Biochem Biophys Res Commun. 2021 Apr 30;551:27-32. doi: 10.1016/j.bbrc.2021.03.010. Epub 2021 Mar 11.
10
Protein-Protein Docking Reveals Dynamic Interactions of Tropomyosin on Actin Filaments.
Biophys J. 2020 Jul 7;119(1):75-86. doi: 10.1016/j.bpj.2020.05.017. Epub 2020 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验