Suppr超能文献

用于经椎间孔腰椎椎间融合术手术规划的端到端人工智能模型的开发

Development of End-to-End Artificial Intelligence Models for Surgical Planning in Transforaminal Lumbar Interbody Fusion.

作者信息

Bui Anh Tuan, Le Hieu, Hoang Tung Thanh, Trinh Giam Minh, Shao Hao-Chiang, Tsai Pei-I, Chen Kuan-Jen, Hsieh Kevin Li-Chun, Huang E-Wen, Hsu Ching-Chi, Mathew Mathew, Lee Ching-Yu, Wang Po-Yao, Huang Tsung-Jen, Wu Meng-Huang

机构信息

International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.

Department of Spine Surgery, Military Hospital 103, Vietnam Military Medical University, Hanoi 100000, Vietnam.

出版信息

Bioengineering (Basel). 2024 Feb 8;11(2):164. doi: 10.3390/bioengineering11020164.

Abstract

Transforaminal lumbar interbody fusion (TLIF) is a commonly used technique for treating lumbar degenerative diseases. In this study, we developed a fully computer-supported pipeline to predict both the cage height and the degree of lumbar lordosis subtraction from the pelvic incidence (PI-LL) after TLIF surgery, utilizing preoperative X-ray images. The automated pipeline comprised two primary stages. First, the pretrained BiLuNet deep learning model was employed to extract essential features from X-ray images. Subsequently, five machine learning algorithms were trained using a five-fold cross-validation technique on a dataset of 311 patients to identify the optimal models to predict interbody cage height and postoperative PI-LL. LASSO regression and support vector regression demonstrated superior performance in predicting interbody cage height and postoperative PI-LL, respectively. For cage height prediction, the root mean square error (RMSE) was calculated as 1.01, and the model achieved the highest accuracy at a height of 12 mm, with exact prediction achieved in 54.43% (43/79) of cases. In most of the remaining cases, the prediction error of the model was within 1 mm. Additionally, the model demonstrated satisfactory performance in predicting PI-LL, with an RMSE of 5.19 and an accuracy of 0.81 for PI-LL stratification. In conclusion, our results indicate that machine learning models can reliably predict interbody cage height and postoperative PI-LL.

摘要

经椎间孔腰椎椎间融合术(TLIF)是治疗腰椎退行性疾病的常用技术。在本研究中,我们开发了一种完全由计算机支持的流程,利用术前X线图像预测TLIF手术后椎间融合器高度以及骨盆入射角减去腰椎前凸角度(PI-LL)。该自动化流程包括两个主要阶段。首先,使用预训练的BiLuNet深度学习模型从X线图像中提取关键特征。随后,在311例患者的数据集上采用五折交叉验证技术训练五种机器学习算法,以确定预测椎间融合器高度和术后PI-LL的最佳模型。套索回归和支持向量回归分别在预测椎间融合器高度和术后PI-LL方面表现出卓越性能。对于椎间融合器高度预测,均方根误差(RMSE)计算为1.01,该模型在12毫米高度时达到最高准确率,在54.43%(43/79)的病例中实现了准确预测。在大多数其余病例中,模型的预测误差在1毫米以内。此外,该模型在预测PI-LL方面表现出令人满意的性能,RMSE为5.19,PI-LL分层准确率为0.81。总之,我们的结果表明机器学习模型能够可靠地预测椎间融合器高度和术后PI-LL。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57d7/10885900/835cd8b20c59/bioengineering-11-00164-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验