Suppr超能文献

基于单根氧化锌纳米棒的免疫检测中的应变调制和纳米棒波导荧光。

Strain-Modulated and Nanorod-Waveguided Fluorescence in Single Zinc Oxide Nanorod-Based Immunodetection.

机构信息

Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA.

出版信息

Biosensors (Basel). 2024 Feb 3;14(2):85. doi: 10.3390/bios14020085.

Abstract

Mechanical strain has been shown to be a versatile and tunable means to control various properties of nanomaterials. In this work, we investigate how strain applied to individual ZnO nanorods (NRs) can affect the fluorescence signals originated from external sources of bioanalytes, which are subsequently coupled and guided onto the NRs. Specifically, we determine how factors such as the NR length and protein concentration can influence the strain-induced changes in the waveguided fluorescence intensity along the NRs. We employ a protein of tumor necrosis factor-α (TNF-α) and a fluorophore-labeled antibody in a model immunoassay reaction, after which Alexa488-TNF-α immunocomplex is formed on ZnO NRs. We elucidate the relationships between the types as well as amounts of strain on the NRs and the fluorescence intensity originated from the Alexa488-TNF-α immunocomplexes. We show that tensile (compressive) strain applied to the NR leads to an increase (decrease) in the waveguided fluorescence signals. By assessing important optical phenomena such as fluorescence intensification on nanorod ends () and degree of (), we confirm their linear dependence with both the types and amounts of strain. Furthermore, the strain-induced changes in both and are found to be independent of protein concentration. We determine that NR length plays a critical role in obtaining high strain-dependence of the measured fluorescence signals. Particularly, we ascertain that longer NRs yield larger changes in both and in response to the applied strain, relative to shorter ones. In addition, longer NRs permit higher linear correlation between the protein concentration and the waveguided fluorescence intensity. These outcomes provide valuable insight into exploiting strain to enhance the detection of optical signals from bioanalytes, thus enabling their quantifications even at ultra-trace levels. Coupled with the use of individual ZnO NRs demonstrated in our measurements, this work may contribute to the development of a miniaturized, highly sensitive biosensor whose signal transduction is best optimized by the application of strain.

摘要

机械应变已被证明是一种通用且可调的手段,可以控制纳米材料的各种性质。在这项工作中,我们研究了施加在单个 ZnO 纳米棒(NR)上的应变如何影响来自生物分析物外部源的荧光信号,这些信号随后被耦合并引导到 NR 上。具体来说,我们确定了 NR 长度和蛋白质浓度等因素如何影响沿 NR 产生的应变诱导的波导荧光强度变化。我们在模型免疫分析反应中使用肿瘤坏死因子-α(TNF-α)的蛋白质和荧光标记的抗体,之后在 ZnO NR 上形成 Alexa488-TNF-α免疫复合物。我们阐明了 NR 上应变的类型和数量与源自 Alexa488-TNF-α免疫复合物的荧光强度之间的关系。我们表明,施加在 NR 上的拉伸(压缩)应变会导致波导荧光信号的增加(减少)。通过评估纳米棒末端的荧光增强()和程度()等重要光学现象,我们证实它们与应变的类型和数量呈线性关系。此外,还发现 和 中的应变诱导变化与蛋白质浓度无关。我们确定 NR 长度在获得测量荧光信号的高应变依赖性方面起着关键作用。特别是,我们确定与较短的 NR 相比,较长的 NR 会导致在施加应变时在 和 中产生更大的变化。此外,较长的 NR 允许在蛋白质浓度和波导荧光强度之间建立更高的线性相关性。这些结果为利用应变来增强生物分析物光学信号的检测提供了有价值的见解,从而能够在超痕量水平下对其进行定量。结合我们测量中使用的单个 ZnO NR,这项工作可能有助于开发一种小型化、高灵敏度的生物传感器,其信号转导通过施加应变得到最佳优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验