CNRS-Centre de Biophysique Moléculaire, Orléans, France.
CNRS-Conditions Extrêmes et Matériaux: Haute Température et Irradiation, Orléans, France.
Astrobiology. 2024 Feb;24(2):190-226. doi: 10.1089/ast.2023.0089.
The NASA Mars 2020 Perseverance rover is actively exploring Jezero crater to conduct analyses on igneous and sedimentary rock targets from outcrops located on the crater floor (Máaz and Séítah formations) and from the delta deposits, respectively. The rock samples collected during this mission will be recovered during the Mars Sample Return mission, which plans to bring samples back to Earth in the 2030s to conduct in-depth studies using sophisticated laboratory instrumentation. Some of these samples may contain traces of ancient martian life that may be particularly difficult to detect and characterize because of their morphological simplicity and subtle biogeochemical expressions. Using the volcanic sediments of the 3.45 Ga Kitty's Gap Chert (Pilbara, Australia), containing putative early life forms (chemolithotrophs) and considered as astrobiological analogues for potential early Mars organisms, we document the steps required to demonstrate the syngenicity and biogenicity of such biosignatures using multiple complementary analytical techniques to provide information at different scales of observation. These include sedimentological, petrological, mineralogical, and geochemical analyses to demonstrate macro- to microscale habitability. New approaches, some unavailable at the time of the original description of these features, are used to verify the syngenicity and biogenicity of the purported fossil chemolithotrophs. The combination of elemental (proton-induced X-ray emission spectrometry) and molecular (deep-ultraviolet and Fourier transform infrared) analyses of rock slabs, thin sections, and focused ion beam sections reveals that the carbonaceous matter present in the samples is enriched in trace metals (, V, Cr, Fe, Co) and is associated with aromatic and aliphatic molecules, which strongly support its biological origin. Transmission electron microscopy observations of the carbonaceous matter documented an amorphous nanostructure interpreted to correspond to the degraded remains of microorganisms and their by-products (extracellular polymeric substances, filaments…). Nevertheless, a small fraction of carbonaceous particles has signatures that are more metamorphosed. They probably represent either reworked detrital biological or abiotic fragments of mantle origin. This study serves as an example of the analytical protocol that would be needed to optimize the detection of fossil traces of life in martian rocks.
美国宇航局的火星 2020 毅力号漫游者正在积极探索杰泽罗陨石坑,对位于陨石坑底部(Máaz 和 Séítah 地层)和三角洲沉积物的火成岩和沉积岩露头目标进行分析。在这次任务中收集的岩石样本将在火星样本返回任务中回收,该任务计划在 2030 年代将样本带回地球,使用复杂的实验室仪器进行深入研究。其中一些样本可能含有古代火星生命的痕迹,由于其形态简单和微妙的生物地球化学表达,这些痕迹可能特别难以检测和特征化。利用含有假定早期生命形式(化能自养生物)的 34.5 亿年 Kitty's Gap 硅化燧石(澳大利亚皮尔巴拉)的火山沉积物,我们记录了使用多种互补分析技术证明此类生物特征的同生性和生物成因所需的步骤,以提供不同观测尺度的信息。这些分析包括沉积学、岩石学、矿物学和地球化学分析,以证明从宏观到微观的宜居性。一些新的方法,在这些特征最初描述时不可用,用于验证假定化石化能自养生物的同生性和生物成因。对岩板、薄片和聚焦离子束切片的元素(质子诱导 X 射线发射光谱)和分子(深紫外和傅里叶变换红外)分析的结合,揭示了样品中存在的碳质物质富含微量元素(, V, Cr, Fe, Co),并与芳香族和脂肪族分子相关联,这强烈支持其生物起源。对碳质物质的透射电子显微镜观察记录了一种无定形纳米结构,解释为对应于微生物及其产物(细胞外聚合物物质、丝状……)的降解残留物。然而,一小部分碳质颗粒具有更变质的特征。它们可能代表再加工的碎屑生物或来自地幔的无生命碎片。这项研究是分析方案的一个示例,该方案将用于优化在火星岩石中检测生命化石痕迹。