Suppr超能文献

基于三种机器学习算法和 WGCNA 鉴定 IgA 肾病的功能亚型。

Identifying functional subtypes of IgA nephropathy based on three machine learning algorithms and WGCNA.

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, 150086, Harbin, China.

出版信息

BMC Med Genomics. 2024 Feb 23;17(1):61. doi: 10.1186/s12920-023-01702-9.

Abstract

BACKGROUND

IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis, which is a significant cause of renal failure. At present, the classification of IgAN is often limited to pathology, and its molecular mechanism has not been established. Therefore we aim to identify subtypes of IgAN at the molecular level and explore the heterogeneity of subtypes in terms of immune cell infiltration, functional level.

METHODS

Two microarray datasets (GSE116626 and GSE115857) were downloaded from GEO. Differential expression genes (DEGs) for IgAN were screened with limma. Three unsupervised clustering algorithms (hclust, PAM, and ConsensusClusterPlus) were combined to develop a single-sample subtype random forest classifier (SSRC). Functional subtypes of IgAN were defined based on functional analysis and current IgAN findings. Then the correlation between IgAN subtypes and clinical features such as eGFR and proteinuria was evaluated by using Pearson method. Subsequently, subtype heterogeneity was verified by subtype-specific modules identification based on weighted gene co-expression network analysis(WGCNA) and immune cell infiltration analysis based on CIBERSORT algorithm.

RESULTS

We identified 102 DEGs as marker genes for IgAN and three functional subtypes namely: viral-hormonal, bacterial-immune and mixed type. We screened seventeen genes specific to viral hormonal type (ATF3, JUN and FOS etc.), and seven genes specific to bacterial immune type (LIF, C19orf51 and SLPI etc.). The subtype-specific genes showed significantly high correlation with proteinuria and eGFR. The WGCNA modules were in keeping with functions of the IgAN subtypes where the MEcyan module was specific to the viral-hormonal type and the MElightgreen module was specific to the bacterial-immune type. The results of immune cell infiltration revealed subtype-specific cell heterogeneity which included significant differences in T follicular helper cells, resting NK cells between viral-hormone type and control group; significant differences in eosinophils, monocytes, macrophages, mast cells and other cells between bacterial-immune type and control.

CONCLUSION

In this study, we identified three functional subtypes of IgAN for the first time and specific expressed genes for each subtype. Then we constructed a subtype classifier and classify IgAN patients into specific subtypes, which may be benefit for the precise treatment of IgAN patients in future.

摘要

背景

IgA 肾病(IgAN)是最常见的原发性肾小球肾炎之一,也是肾衰竭的重要原因。目前,IgAN 的分类通常仅限于病理学,其分子机制尚未建立。因此,我们旨在在分子水平上识别 IgAN 的亚型,并从免疫细胞浸润、功能水平上探讨亚型的异质性。

方法

从 GEO 下载了两个微阵列数据集(GSE116626 和 GSE115857)。使用 limma 筛选 IgAN 的差异表达基因(DEGs)。三种无监督聚类算法(hclust、PAM 和 ConsensusClusterPlus)相结合,开发了一种单样本亚型随机森林分类器(SSRC)。基于功能分析和当前 IgAN 研究结果,定义 IgAN 的功能亚型。然后,通过 Pearson 方法评估 IgAN 亚型与 eGFR 和蛋白尿等临床特征的相关性。随后,基于加权基因共表达网络分析(WGCNA)和基于 CIBERSORT 算法的免疫细胞浸润分析,鉴定亚型特异性模块,验证亚型异质性。

结果

我们确定了 102 个 DEG 作为 IgAN 的标记基因,并将三个功能亚型命名为:病毒-激素型、细菌-免疫型和混合型。我们筛选出 17 个特定于病毒-激素型的基因(ATF3、JUN 和 FOS 等)和 7 个特定于细菌免疫型的基因(LIF、C19orf51 和 SLPI 等)。亚型特异性基因与蛋白尿和 eGFR 呈显著正相关。WGCNA 模块与 IgAN 亚型的功能一致,其中 MEcyan 模块特异性强于病毒-激素型,MElightgreen 模块特异性强于细菌-免疫型。免疫细胞浸润的结果显示出亚型特异性的细胞异质性,其中病毒-激素型与对照组之间滤泡辅助性 T 细胞、静止 NK 细胞存在显著差异;细菌免疫型与对照组之间存在嗜酸性粒细胞、单核细胞、巨噬细胞、肥大细胞等细胞的显著差异。

结论

本研究首次鉴定了 IgAN 的三个功能亚型,并鉴定了每个亚型的特异性表达基因。然后,我们构建了一个亚型分类器,将 IgAN 患者分为特定的亚型,这可能有助于未来对 IgAN 患者进行精确治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb9b/10893719/c9d4ff06b384/12920_2023_1702_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验