Suppr超能文献

使用计算建模和神经认知测试研究抑郁和快感缺失症状及情感状态的认知特征。

Cognitive Signatures of Depressive and Anhedonic Symptoms and Affective States Using Computational Modeling and Neurocognitive Testing.

机构信息

Carney Institute for Brain Science, Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, Rhode Island.

Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.

出版信息

Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Jul;9(7):726-736. doi: 10.1016/j.bpsc.2024.02.005. Epub 2024 Feb 23.

Abstract

BACKGROUND

Deeper phenotyping may improve our understanding of depression. Because depression is heterogeneous, extracting cognitive signatures associated with severity of depressive symptoms, anhedonia, and affective states is a promising approach.

METHODS

Sequential sampling models decomposed behavior from an adaptive approach-avoidance conflict task into computational parameters quantifying latent cognitive signatures. Fifty unselected participants completed clinical scales and the approach-avoidance conflict task by either approaching or avoiding trials offering monetary rewards and electric shocks.

RESULTS

Decision dynamics were best captured by a sequential sampling model with linear collapsing boundaries varying by net offer values, and with drift rates varying by trial-specific reward and aversion, reflecting net evidence accumulation toward approach or avoidance. Unlike conventional behavioral measures, these computational parameters revealed distinct associations with self-reported symptoms. Specifically, passive avoidance tendencies, indexed by starting point biases, were associated with greater severity of depressive symptoms (R = 0.34, p = .019) and anhedonia (R = 0.49, p = .001). Depressive symptoms were also associated with slower encoding and response execution, indexed by nondecision time (R = 0.37, p = .011). Higher reward sensitivity for offers with negative net values, indexed by drift rates, was linked to more sadness (R = 0.29, p = .042) and lower positive affect (R = -0.33, p = .022). Conversely, higher aversion sensitivity was associated with more tension (R = 0.33, p = .025). Finally, less cautious response patterns, indexed by boundary separation, were linked to more negative affect (R = -0.40, p = .005).

CONCLUSIONS

We demonstrated the utility of multidimensional computational phenotyping, which could be applied to clinical samples to improve characterization and treatment selection.

摘要

背景

更深入的表型分析可能会增进我们对抑郁症的理解。由于抑郁症具有异质性,因此提取与抑郁症状严重程度、快感缺失和情感状态相关的认知特征是一种很有前途的方法。

方法

采用序列抽样模型将自适应趋近回避冲突任务中的行为分解为量化潜在认知特征的计算参数。50 名未经选择的参与者通过趋近或回避提供金钱奖励和电击的试验完成临床量表和趋近回避冲突任务。

结果

决策动态最好由一个具有线性折叠边界的序列抽样模型来捕捉,该模型的边界值随净报价值而变化,漂移率随特定试验的奖励和厌恶而变化,反映了朝着趋近或回避的净证据积累。与传统的行为测量不同,这些计算参数与自我报告的症状有明显的关联。具体来说,由起始点偏差表示的被动回避倾向与抑郁症状严重程度(R=0.34,p=0.019)和快感缺失(R=0.49,p=0.001)呈正相关。抑郁症状也与较慢的编码和反应执行有关,由非决策时间表示(R=0.37,p=0.011)。对具有负净值的报价的较高奖励敏感性,由漂移率表示,与更多的悲伤(R=0.29,p=0.042)和较低的正性情绪(R=-0.33,p=0.022)有关。相反,较高的厌恶敏感性与更多的紧张有关(R=0.33,p=0.025)。最后,由边界分离表示的不谨慎反应模式与更多的负性情绪有关(R=-0.40,p=0.005)。

结论

我们证明了多维计算表型分析的实用性,它可以应用于临床样本,以改善特征描述和治疗选择。

相似文献

1
Cognitive Signatures of Depressive and Anhedonic Symptoms and Affective States Using Computational Modeling and Neurocognitive Testing.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Jul;9(7):726-736. doi: 10.1016/j.bpsc.2024.02.005. Epub 2024 Feb 23.
2
Computational Phenotyping of Effort-Based Decision Making in Unmedicated Adults With Remitted Depression.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025 Jun;10(6):607-615. doi: 10.1016/j.bpsc.2025.02.006. Epub 2025 Feb 24.
3
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
6
New generation antidepressants for depression in children and adolescents: a network meta-analysis.
Cochrane Database Syst Rev. 2021 May 24;5(5):CD013674. doi: 10.1002/14651858.CD013674.pub2.
7
Clinical judgement by primary care physicians for the diagnosis of all-cause dementia or cognitive impairment in symptomatic people.
Cochrane Database Syst Rev. 2022 Jun 16;6(6):CD012558. doi: 10.1002/14651858.CD012558.pub2.
8
Psychological and/or educational interventions for the prevention of depression in children and adolescents.
Cochrane Database Syst Rev. 2004(1):CD003380. doi: 10.1002/14651858.CD003380.pub2.
9
Acupuncture for acute hordeolum.
Cochrane Database Syst Rev. 2017 Feb 9;2(2):CD011075. doi: 10.1002/14651858.CD011075.pub2.
10
Selective noradrenaline reuptake inhibitors for schizophrenia.
Cochrane Database Syst Rev. 2018 Jan 25;1(1):CD010219. doi: 10.1002/14651858.CD010219.pub2.

引用本文的文献

1
A Novel Approach-Avoidance Task to Study Decision Making Under Outcome Uncertainty.
bioRxiv. 2025 Jul 17:2025.07.12.663075. doi: 10.1101/2025.07.12.663075.
2
Theta-frequency subthalamic nucleus stimulation increases decision threshold.
Brain Stimul. 2025 Jul-Aug;18(4):1021-1027. doi: 10.1016/j.brs.2025.05.105. Epub 2025 May 13.
3
Computational Phenotyping of Effort-Based Decision Making in Unmedicated Adults With Remitted Depression.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025 Jun;10(6):607-615. doi: 10.1016/j.bpsc.2025.02.006. Epub 2025 Feb 24.

本文引用的文献

1
Revisiting the theoretical and methodological foundations of depression measurement.
Nat Rev Psychol. 2022 Jun;1(6):358-368. doi: 10.1038/s44159-022-00050-2. Epub 2022 Apr 14.
2
A diffusion decision model analysis of the cognitive effects of neurofeedback for ADHD.
Neuropsychology. 2024 Feb;38(2):146-156. doi: 10.1037/neu0000932. Epub 2023 Nov 16.
3
Cognitive-attentional mechanisms of cooperation-with implications for attention-deficit hyperactivity disorder and cognitive neuroscience.
Cogn Affect Behav Neurosci. 2023 Dec;23(6):1545-1567. doi: 10.3758/s13415-023-01129-w. Epub 2023 Oct 3.
6
Editorial: What is computational psychopathology, and why do we need it?
Neurosci Biobehav Rev. 2023 Sep;152:105170. doi: 10.1016/j.neubiorev.2023.105170. Epub 2023 Apr 17.
8
Quantifying aberrant approach-avoidance conflict in psychopathology: A review of computational approaches.
Neurosci Biobehav Rev. 2023 Apr;147:105103. doi: 10.1016/j.neubiorev.2023.105103. Epub 2023 Feb 17.
9
Large-scale neural network computations and multivariate representations during approach-avoidance conflict decision-making.
Neuroimage. 2022 Dec 1;264:119709. doi: 10.1016/j.neuroimage.2022.119709. Epub 2022 Oct 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验