Department of Data Science and Artificial Intelligence, The University of Petra, Amman, Jordan.
Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden.
Sci Rep. 2024 Feb 24;14(1):4539. doi: 10.1038/s41598-024-55061-1.
In ophthalmic diagnostics, achieving precise segmentation of retinal blood vessels is a critical yet challenging task, primarily due to the complex nature of retinal images. The intricacies of these images often hinder the accuracy and efficiency of segmentation processes. To overcome these challenges, we introduce the cognitive DL retinal blood vessel segmentation (CoDLRBVS), a novel hybrid model that synergistically combines the deep learning capabilities of the U-Net architecture with a suite of advanced image processing techniques. This model uniquely integrates a preprocessing phase using a matched filter (MF) for feature enhancement and a post-processing phase employing morphological techniques (MT) for refining the segmentation output. Also, the model incorporates multi-scale line detection and scale space methods to enhance its segmentation capabilities. Hence, CoDLRBVS leverages the strengths of these combined approaches within the cognitive computing framework, endowing the system with human-like adaptability and reasoning. This strategic integration enables the model to emphasize blood vessels, accurately segment effectively, and proficiently detect vessels of varying sizes. CoDLRBVS achieves a notable mean accuracy of 96.7%, precision of 96.9%, sensitivity of 99.3%, and specificity of 80.4% across all of the studied datasets, including DRIVE, STARE, HRF, retinal blood vessel and Chase-DB1. CoDLRBVS has been compared with different models, and the resulting metrics surpass the compared models and establish a new benchmark in retinal vessel segmentation. The success of CoDLRBVS underscores its significant potential in advancing medical image processing, particularly in the realm of retinal blood vessel segmentation.
在眼科诊断中,精确分割视网膜血管是一项关键而具有挑战性的任务,主要是因为视网膜图像的复杂性。这些图像的复杂性常常阻碍了分割过程的准确性和效率。为了克服这些挑战,我们引入了认知深度学习视网膜血管分割(CoDLRBVS),这是一种新颖的混合模型,它协同结合了 U-Net 架构的深度学习能力和一系列先进的图像处理技术。该模型独特地集成了使用匹配滤波器(MF)进行特征增强的预处理阶段和使用形态学技术(MT)进行分割输出细化的后处理阶段。此外,该模型还采用了多尺度线检测和尺度空间方法来增强其分割能力。因此,CoDLRBVS 在认知计算框架内利用这些组合方法的优势,赋予系统类似人类的适应性和推理能力。这种策略性的集成使模型能够强调血管,准确有效地分割,并熟练地检测各种大小的血管。CoDLRBVS 在所有研究的数据集(包括 DRIVE、STARE、HRF、视网膜血管和 Chase-DB1)上都取得了显著的平均准确度 96.7%、精确度 96.9%、灵敏度 99.3%和特异性 80.4%。CoDLRBVS 与不同的模型进行了比较,所得的指标超过了比较的模型,并在视网膜血管分割领域建立了新的基准。CoDLRBVS 的成功突出了它在推进医学图像处理方面的巨大潜力,特别是在视网膜血管分割领域。