Suppr超能文献

生物力学膝关节模型的自动化个性化定制。

Automated personalization of biomechanical knee model.

机构信息

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 8 Gubkin Str., Moscow, 119333, Russia.

Sechenov University, 8-2 Trubetskaya str., Moscow, 119991, Russia.

出版信息

Int J Comput Assist Radiol Surg. 2024 May;19(5):891-902. doi: 10.1007/s11548-024-03075-5. Epub 2024 Feb 25.

Abstract

PURPOSE

Patient-specific biomechanical models of the knee joint can effectively aid in understanding the reasons for pathologies and improve diagnostic methods and treatment procedures. For deeper research of knee diseases, the development of biomechanical models with appropriate configurations is essential. In this study, we mainly focus on the development of a personalized biomechanical model for the investigation of knee joint pathologies related to patellar motion using automated methods.

METHODS

This study presents a biomechanical model created for patellar motion pathologies research and some techniques for automating the generation of the biomechanical model. To generate geometric models of bones, the U-Net neural network was adapted for 3D input datasets. The method uses the same neural network for segmentation of femur, tibia, patella and fibula. The total size of the train/validation (75/25%) dataset is 18,183 3D volumes of size voxels. The configuration of the biomechanical knee model proposed in the paper includes six degrees of freedom for the tibiofemoral and patellofemoral joints, lateral and medial contact surfaces for femur and tibia, and ligaments, representing, among other things, the medial and lateral stabilizers of the knee cap. The development of the personalized biomechanical model was carried out using the OpenSim software system. The automated model generation was implemented using OpenSim Python scripting commands.

RESULTS

The neural network for bones segmentation achieves mean DICE 0.9838. A biomechanical model for realistic simulation of patellar movement within the trochlear groove was proposed. Generation of personalized biomechanical models was automated.

CONCLUSIONS

In this paper, we have implemented a neural network for the segmentation of 3D CT scans of the knee joint to produce a biomechanical model for the study of knee cap motion pathologies. Most stages of the generation process have been automated and can be used to generate patient-specific models.

摘要

目的

膝关节的患者特异性生物力学模型可以有效地帮助理解病理原因,并改善诊断方法和治疗程序。为了更深入地研究膝关节疾病,开发具有适当配置的生物力学模型是至关重要的。在这项研究中,我们主要专注于使用自动化方法开发用于研究与髌骨运动相关的膝关节疾病的个性化生物力学模型。

方法

本研究提出了一种用于研究髌骨运动病理的生物力学模型,并介绍了一些用于自动化生成生物力学模型的技术。为了生成骨骼的几何模型,我们对 U-Net 神经网络进行了调整,以适应 3D 输入数据集。该方法使用相同的神经网络进行股骨、胫骨、髌骨和腓骨的分割。训练/验证(75/25%)数据集的总体大小为 18183 个大小为 voxel 的 3D 体积。本文提出的生物力学膝关节模型的配置包括胫股和髌股关节的六个自由度、股骨和胫骨的外侧和内侧接触表面,以及代表膝关节内外侧稳定器的韧带等。使用 OpenSim 软件系统开发了个性化生物力学模型。使用 OpenSim Python 脚本命令实现了自动化模型生成。

结果

骨骼分割的神经网络实现了平均 DICE 为 0.9838。提出了一种用于真实模拟髌骨在滑车沟内运动的生物力学模型。实现了个性化生物力学模型的自动化生成。

结论

在本文中,我们实现了一个用于膝关节 3D CT 扫描分割的神经网络,以生成用于研究髌骨运动病理的生物力学模型。生成过程的大多数阶段都已自动化,可以用于生成患者特异性模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验