Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Zuckerman Institute, Columbia University, New York, NY 10027, USA.
Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
Curr Biol. 2024 Mar 11;34(5):1059-1075.e5. doi: 10.1016/j.cub.2024.01.071. Epub 2024 Feb 22.
Natural behaviors are a coordinated symphony of motor acts that drive reafferent (self-induced) sensory activation. Individual sensors cannot disambiguate exafferent (externally induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to carry out adaptive behaviors through corollary discharge circuits (CDCs), which provide predictive motor signals from motor pathways to sensory processing and other motor pathways. Yet, how CDCs comprehensively integrate into the nervous system remains unexplored. Here, we use connectomics, neuroanatomical, physiological, and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs) in Drosophila, which function as a predictive CDC in other insects. Both AHN pairs receive input primarily from a partially overlapping population of descending neurons, especially from DNg02, which controls wing motor output. Using Ca imaging and behavioral recordings, we show that AHN activation is correlated to flight behavior and precedes wing motion. Optogenetic activation of DNg02 is sufficient to activate AHNs, indicating that AHNs are activated by descending commands in advance of behavior and not as a consequence of sensory input. Downstream, each AHN pair targets predominantly non-overlapping networks, including those that process visual, auditory, and mechanosensory information, as well as networks controlling wing, haltere, and leg sensorimotor control. These results support the conclusion that the AHNs provide a predictive motor signal about wing motor state to mostly non-overlapping sensory and motor networks. Future work will determine how AHN signaling is driven by other descending neurons and interpreted by AHN downstream targets to maintain adaptive sensorimotor performance.
自然行为是一种协调的运动行为交响乐,它驱动着传入(自我诱导)感觉激活。单个传感器无法区分传出(外部诱导)和传入感觉的来源。然而,动物可以通过关联放电回路(CDCs)轻松区分这些感觉信号源,从而通过预测性运动信号来执行适应性行为,这些信号从运动通路提供给感觉处理和其他运动通路。然而,CDC 如何全面整合到神经系统中仍未得到探索。在这里,我们使用连接组学、神经解剖学、生理学和行为学方法来解决果蝇中两对上升组氨酸能神经元(AHN)的网络架构,这些神经元在其他昆虫中作为预测性 CDC 发挥作用。这两对 AHN 都主要接收部分重叠的下行神经元群体的输入,尤其是来自 DNg02 的输入,DNg02 控制着翅膀的运动输出。使用 Ca 成像和行为记录,我们表明 AHN 的激活与飞行行为相关,并先于翅膀运动。DNg02 的光遗传学激活足以激活 AHN,表明 AHN 是由下行命令在行为之前激活的,而不是作为感觉输入的结果。在下游,每对 AHN 都主要靶向非重叠网络,包括处理视觉、听觉和机械感觉信息的网络,以及控制翅膀、平衡器和腿部感觉运动控制的网络。这些结果支持了这样的结论,即 AHN 提供了关于翅膀运动状态的预测性运动信号,主要是针对非重叠的感觉和运动网络。未来的工作将确定 AHN 信号如何被其他下行神经元驱动,以及如何被 AHN 下游靶标解释,以维持适应性感觉运动性能。