Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 500007, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
Neuromolecular Med. 2024 Feb 26;26(1):3. doi: 10.1007/s12017-023-08768-9.
Cerebral ischemic stroke is one of the foremost global causes of death and disability. Due to inadequate knowledge in its sequential disease mechanisms, therapeutic efforts to mitigate acute ischemia-induced brain injury are limited. Recent studies have implicated epigenetic mechanisms, mostly histone lysine acetylation/deacetylation, in ischemia-induced neural damage and death. However, the role of lysine methylation/demethylation, another prevalent epigenetic mechanism in cerebral ischemia has not undergone comprehensive investigation, except a few recent reports, including those from our research cohort. Considering the impact of sex on post-stroke outcomes, we studied both male and female mice to elucidate molecular details using our recently developed Internal Carotid Artery Occlusion (ICAO) model, which induces mild to moderate cerebral ischemia, primarily affecting the striatum and ventral hippocampus. Here, we demonstrate for the first time that female mice exhibit faster recovery than male mice following ICAO, evaluated through neurological deficit score and motor coordination assessment. Furthermore, our investigation unveiled that dysregulated histone lysine demethylases (KDMs), particularly kdm4b/jmjd2b are responsible for the sex-specific variance in the modulation of inflammatory genes. Building upon our prior reportage blocking KDMs by DMOG (Dimethyloxalylglycine) and thus preventing the attenuation in H3k9me2 reduced the post-ICAO transcript levels of the inflammatory molecules and neural damage, our present study delved into investigating the differential role of H3k9me2 in the regulation of pro-inflammatory genes in female vis-à-vis male mice underlying ICAO-induced neural damage and recovery. Overall, our results reveal the important role of epigenetic mark H3k9me2 in mediating sex-specific sequential events in inflammatory response, elicited post-ICAO.
脑缺血性中风是全球首要的死亡和残疾原因之一。由于对其连续疾病机制的了解不足,减轻急性缺血引起的脑损伤的治疗努力受到限制。最近的研究表明,表观遗传机制,主要是组蛋白赖氨酸乙酰化/去乙酰化,在缺血诱导的神经损伤和死亡中起作用。然而,除了少数最近的报道,包括我们的研究队列的报道,另一种常见的表观遗传机制赖氨酸甲基化/去甲基化在脑缺血中的作用尚未经过全面研究。考虑到性别对中风后结果的影响,我们研究了雄性和雌性小鼠,使用我们最近开发的颈内动脉闭塞 (ICAO) 模型来阐明分子细节,该模型诱导轻度至中度脑缺血,主要影响纹状体和腹侧海马。在这里,我们首次证明雌性小鼠在 ICAO 后比雄性小鼠恢复得更快,通过神经缺陷评分和运动协调评估来评估。此外,我们的研究表明,失调的组蛋白赖氨酸去甲基酶 (KDMs),特别是 kdm4b/jmjd2b,负责调节炎症基因的性别特异性变化。基于我们之前的报告,通过 DMOG(二甲草酰甘氨酸)阻断 KDMs 并防止 H3k9me2 减弱,可降低 ICAO 后炎症分子和神经损伤的转录水平,我们目前的研究深入探讨了 H3k9me2 在调节 ICAO 诱导的神经损伤和恢复中雌性和雄性小鼠炎症基因中的差异作用。总的来说,我们的研究结果揭示了表观遗传标记 H3k9me2 在介导 ICAO 后炎症反应中性别特异性连续事件中的重要作用。